Влияние озонирования дефекованного сока на качественные оказатели очищенного сока
Применение окислителей в процессе очистки сахарсодержащих растворов приводит к значительному ингибирова-нию реакций образования темноокрашен-ных соединений и снижению цветности продуктов превращения редуцирующих веществ [4-6]. Результаты исследований воздействия окислителей и восстановителей на отдельные группы красящих веществ также свидетельствуют о преимуществе окислителей в области обесцвечивания сахарсодержащих растворов [2].
В данной работе проведено исследование процесса озонирования в условиях очистки диффузионного сока, в частности на этапе дефекации перед II сатурацией. Определяли влияние обработки озоном на чистоту, цветность, массовые доли солей кальция и редуцирующих веществ очищенного сока.
Опыты проводили следующим образом. Диффузионный сок направляли на прогрессивную преддефекацию до рН 10,8-11,2 при температуре 54...56 °С, комбинированную основную дефекацию с расходом извести 2,0-2,5 % к массе сока. Далее осуществляли I сатурацию при температуре 85...90 °С, конечное значение рН 10,8-11,2, отделение осадка путем фильтрования, дефекацию перед II сатурацией продолжительностью 4-6 мин при температуре 80...85 °С и расходе извести 0,2-0,3 % к массе сока. В процессе дефекации перед II сатурацией сок обрабатывали озоно-воздушной смесью при температуре 60... 100 °С с расходом озоно-воздушной смеси 0,5-6,0 м3/м3 сока и концентрацией в ней озона 2-12 г/м3. Далее проводили II сатурацию при температуре 85...90 °С до конечного значения рН 9,0-9,5 и отделение осадка путем фильтрования. Результаты анализа очищенного сока представлены на рис. 1-4.Из представленных графиков видно, что рациональные условия обработки озоном дефекованного сока следующие: температура 85 °С, расход озоно-воз-душной смеси 4,5 м3/м3 сока, концентрация озона 10 г/м3.
Насыщение полупродуктов озоном в процессе очистки диффузионного сока осуществляется с целью инициализации протекания дополнительных химических реакций, в результате которых происходит окисление целого ряда несахаров, сопровождающееся их распадом. Продукты распада, а также образовавшиеся промежуточные соединения впоследствии способны адсорбироваться на карбонате кальция. Некоторые соединения (например, гуминовые вещества) окисляются до диоксида углерода и воды [3]. При этом наблюдаются повышение чистоты и скорости седиментации, снижение фильтрационного коэффициента и цветности очищенного сока.
Озон обладает большой избыточной^, энергией молекулы (24 ккал/моль). При осуществлении технологических операций он легко взаимодействует с веществами щелочного характера, фенолсодержа-щими соединениями, макромолекулами белков, высокомолекулярными соединениями и др., что в большинстве случаев сопровождается их деструкцией и адсорбцией продуктов реакций на карбонате кальция. При этом снижается цветность и повышается эффективность удаления несахаров из очищенного сока [1].
В связи с высоким окислительным потенциалом молекулярного озона при обработке дефекованного сока происходит интенсивное разложение моносахаридов, продукты разложения которых в щелочной среде окисляются с образованием устойчивых бесцветных соединений, что предотвращает цветообразование.
Насыщение озоном промежуточных продуктов сахарного производства приводит к значительному снижению интенсивности их окраски, что объясняется воздействием растворенного озона на присутствующие в реакционной среде молекулы красящих веществ. При этом происходят окисление высокомолекулярных соединений и разрыв двойных связей углеродного скелета, чем и обусловлено снижение цветности и вязкости сахарсодержащего раствора.В результате пониженной устойчивости несахаров в сильнощелочной среде с увеличением щелочности наблюдается интенсификация процессов окисления и разложения несахаров под действием озона. Образующиеся при этом озони-ды и молозониды могут реагировать с Са(0Н)2 с образованием нетоксичных соединений в виде осадка.
С повышением температуры сока растворимость озона в нём уменьшается, но, как известно, увеличивается скорость химических реакций и соответственно скорость взаимодействия озона с неса-харами, поэтому при увеличении температуры процесса до 80 °С происходит интенсификация разложения и удаления не-сахаров.Повышение температуры выше 80 °С приводит к увеличению цветности и снижению эффекта очистки за счет значительного снижения растворимости озона в реакционной среде, хотя скорость химических реакций при этом достаточно высокая.Повышение концентрации или расхода озоно-воздушной смеси выше экспериментально установленных значений практически не вызывает изменения показателей качества очистки диффузионного сока, к тому же при этом снижается коэффициент утилизации озона и значительно увеличиваются энергетические затраты. Следовательно, проводить очистку при таких параметрах нецелесообразно.
Состав летучих компонентов безалкогольного пива, полученного в процессе аэрации
Для производства безалкогольного пива существует ряд побуждающих причин: все шире пропагандируется здоровый образ жизни; потребителями такого пива могут стать водители, которым не придется бояться негативных последствий; религиозные причины, накладывающие запрет на потребление алкоголя.
В настоящее время существует ряд технологий производства безалкогольного пива, которые условно можно подразделить на две группы: технологии, по которым подавляется процесс образования спирта, и технологии, где спирт удаляется из готового пива.
В первой группе технологий используют специальные штаммы дрожжей, не сбраживающие мальтозу в алкоголь (или сбраживающие в ограниченном объеме). Кроме того, при получении безалкогольного пива предотвращается образование спирта вследствие понижения температуры брожения по достижении определенной степени сбраживания. По этим технологиям производится пиво с высоким содержанием остаточных Сахаров и с преобладанием сладковатого привкуса. На вкус такого пива влияет отсутствие продуктов брожения. Данные сорта можно назвать скорее безалкоголь-пыми напитками, чем пивом. Во второй группе технологий алкоголь удаляется из готового пива одним из двух способов: термическим, когда алкоголь удаляется с помощью тепловой энергии с использованием низкой точки кипения алкоголя; мембранным с помощью мембран с очень мелкими порами для удаления алкоголя за счет различия в размере молекул.
Данная работа посвящена разработке технологии безалкогольного пива, основанной на ограничении образования этилового спирта за счет повышенной аэрации пивного сусла кислородом воздуха перед главным брожением. В результате происходит частичный перевод процесса брожения на процесс дыхания с последующим увеличением биомассы дрожжей и уменьшением образования спирта. В то же время из-за наличия некоторого количества в сусле несброженных Сахаров наряду с процессом дыхания идет и процесс брожения, в результате которого образуются вкусовые и ароматические веществ, обусловливающие букет зрелого пива.
Известно, что во время брожения дрожжи выделяют в пиво целый ряд продуктов метаболизма, которые претерпевают количественные и качественные изменения, частично реагируя друг с другом. Побочные продукты брожения имеют решающее значение для качества готового пива, поэтому их образование и расщепление нужно рассматривать вместе с метаболизмом дрожжей. Это вещества, формирующие букет молодого пива (диацетил, альдегиды, сернистые соединения). Они придают пиву нечистый, зеленый, незрелый вкус и запах и при повышенной концентрации отрицательно влияют на качество пива, но в ходе брожения и созревания могут быть удалены из пива биохимическим путем, в чем и состоит цель созревания пива. Вторая группа — вещества, формирующее букет готового пива (высшие спирты, эфи-ры). Они в значительной мере определяют аромат пива: их наличие в определенной концентрации служит предпосылкой для получения качественного пива. Эти вещества в отличие от первой группы не могут быть удалены из пива технологическим путем.
Образование побочных продуктов брожения и синтез запасных веществ дрожжей зависят от словий процесса. Значительное влияние оказывает азотный обмен дрожжей и скорость размножения. Некоторые продукты (например, пируват) накапливаются при размножении, другие (ацетат) — когда дрожжевые клетки не растут. Так как на построение биомассы дрожжей используется часть энергии, полученной от брожения, то изменение степени роста означает, что больше или меньше энергии может быть использовано для синтеза побочных продуктов брожения. Например, при стимулировании роста дрожжей образуется меньше эфиров и больше высших спиртов [1].
Образующиеся при брожении летучие вещества принадлежат к различным группам химических соединений: высшие спирты, летучие кислоты, эфиры, альдегиды и их производные, серосодержащие вещества. Пируват и ацетальдегид — важнейшие метаболиты дрожжей (их высокие концентрации создают неприятный букете и снижают качество пива). К концу главного брожения содержание альдегидов повышается, затем оно снижается. Более высокая норма введения дрожжей, повышенная температура и брожение под давлением увеличивают образование альдегидов, перемешивание — уменьшает [1].