Смекни!
smekni.com

Влияние сульфид-ионов на кинетику и механизм растворения золота в тиокарбамидных растворах (стр. 1 из 3)

РЕФЕРАТ

на тему

«ВЛИЯНИЕ СУЛЬФИД-ИОНОВ НА КИНЕТИКУ И МЕХАНИЗМ РАСТВОРЕНИЯ ЗОЛОТА В ТИОКАРБАМИДНЫХ РАСТВОРАХ»


ВВЕДЕНИЕ

Известно, что в отсутствие на поверхности каталитически активных частиц золото растворяется в тиокарбамидных растворах с очень малой скоростью [1-3]. Кинетика и механизм процесса в этих условиях были изучены в работе [1] с использованием техники обновления поверхности металла непосредственно в растворе, что обеспечивало чистоту межфазной границы от примесей, способных оказать каталитическое влияние на процесс. Было показано, что в этих условиях эффективные значения коэффициента переноса и порядка реакции по тиокарбамиду имеют экстремально низкие значения а =* 0.1 и Ра= 0.2, а величина тока обмена равна примерно /0 ~ Ю~5 А/см2. В работах [1, 2] в качестве каталитически активной примеси предполагались сульфид-ионы, всегда присутствующие в малой концентрации в растворах тиокарбамида вследствие разложения последнего [4—6]. В работах [2, 7] было показано, что сульфид-ионы действительно оказывают сильное каталитическое воздействие на этот процесс.

Техника обновления поверхности металла непосредственно в растворе позволяет изучать электрохимические процессы не только в условияхчистоты межфазной границы от адсорбирующихся примесей, но и при контролируемой величине j степени покрытия ими поверхности электрода в (см., например, [8]). В настоящей работе поставлена цель изучить влияние сульфид-ионов на кинетику и механизм процесса растворения золота j при θ = const и сопоставить эти результаты с данными, полученными ранее в отсутствие катализа тора.С использованием автоматизированной установки для обновления поверхности электрода непосредственно в растворе срезом тонкого поверхностного слоя металла получены хроноамперограммы золота при разных потенциалах в растворах, содержащих 0.1 М тиокарбамида, 0.5 М H2SO4 и каталитически активные сульфид-ионы в концентрации Cj от 10~5 до 4 х 10 М. Показано, что при условии c\t = const(t - время, прошедшее после обновления поверхности электрода) результаты измерений тока практически совпадают, что свидетельствует о диффузионной природе процессов, лимитирующих скорость накопления сульфид-ионов на поверхности золота. Это позволило использовать разработанную ранее методику расчета поляризационных кривых при постоянных значениях степени покрытия поверхности 6 каталитически активными ионами. Показано, что при 0 = constвольтамперные зависимости растворения золота в сульфидсодержащих тиокарбамидных растворах соответствуют уравнению Тафеля. С ростом величины 0 эффективные значения тока обмена /0, коэффициента переноса а и порядка анодной реакции по концентрации лиганда Ра возрастают от значений / = 10~5 А/см2, а = 0.12 и Ра = 0.2, характерных для чистых растворов, до 2 х Ю"4 А/см2, а - 0.5 и 1.1 соответственно при в = 0.5. Дана интерпретация установленных закономерностей.

Ключевые слова: кинетика, диффузия, ток, каталитически активные ионы, сульфид, тиоакрбамид, золото.


МЕТОДИКА ИССЛЕДОВАНИЙ

Исследования кинетики процесса проводили с использованием описанного в [9] автоматизированного устройства, позволяющего обновлять поверхность электрода непосредственно в растворе срезом тонкого (3-5 мкм) поверхностного слоя металла. Видимая поверхность электрода составляла 5 х 10~3 см2. Время, необходимое проведения операции среза с использование» этого устройства, составляло около 0\02 с. Измерения, которые начинались не позднее, чем через 0.5 с после окончания операции среза, далее называются выполненными на свежеобновленном электроде. В противном случае время At, прошел шее после окончания операции среза и до начала измерений, оговаривается. Управление устройством обновления электрода и проведение измерений осуществлялось программно-управляемым измерительным комплексом, описанным в [10] позволяет проводить любые измерения i, E, t-зависимостей в интервале силы тока от :до 4 мА и скорости изменения потенциала от 0.001 до 10 В/с со строго задаваемой за-"t начала измерений после обновления поверхности. Потенциал измеряли относительно дельного электрода и затем пересчитывали пу нормального водородного электрода, в которой он приведен в статье.

Растворы готовили из тиокарбамида (далее для краткости он обозначается символом Т) квалификации "ос.ч.", серной кислоты "х.ч." и комплексного тиокарбамида однозарядного золота, полученного, согласно [11], осаждением малорастворимой соли АиТ2С1О4. Последний компонент вводили в раствор в количестве 10 -4 М для стабилизации равновесного потенциала. Содержание других компонентов, как правило, составляло 0,1 М тиокарбамида и 0.5 М H2SO4.

Тиокарбамид образует прочный комплекс с ионами однозарядного золота состава АиТ+2 линейной структуры. Его константа устойчивости мо-жет быть рассчитана по данным работы [11] и составляет примерно 1022. Стандартный потенциалАиТ2 + е <=> Аи + 2Т, согласно [11, 12], составляет 0.38 В. Таким образом, равновесный потенциал золота в растворе указанного выше состава был близок 0.26 В. Сульфид-ионы в количестве от 1 х 10~5 до 4 х 10~5 М вводили в раствор отбора аликвоты раствора, содержащего 1О-3 М Na2S. Все растворы готовились непосредственно перед экспериментом. Известно, что .в кислых растворах сульфид-ионы образуют комплексы H2S и HS-, полные константы образования которых, согласно [13], равны 1О21 и 1014 соответственно. Расчеты с использованием этих констант показывают, что в присутствии 0.5 М H2SO4 практитески все сульфид-ионы находятся в составе молекул H2S. Имея в виду возможность улетучивания этих молекул из раствора, перед добавлением Na2S и на время эксперимента продувка раствора водородом прекращалась. До введения в 'раствор продувался водородом для устранения растворенного кислорода, так что к моменту добавления Na2S ток, связанный с его восстановлением, не превышал 15 мкА/см2 [14].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 сопоставлены поляризационные кривые, полученные в растворах одинакового по содержанию тиокарбамида, комплексной тиокарба-мидной соли золота и H2SO4 состава, но к одному из них было добавлено 4 х 10~5 М Na2S (кривая 7), а в другом - эта добавка отсутствовала (кривая 2). Видно, что эта добавка оказывает сильное каталитическое влияние на процесс растворения золота. Поляризационная кривая в присутствии этой добавки имеет максимум. Спад тока после максимума был ранее объяснен частичным окислением адсорбированных сульфид-ионов по достижении потенциала, когда такой процесс становится термодинамически возможным [2].

Как было показано в [7], в присутствии сульфидсодержащей добавки значения тока растворения золота зависят от ее концентрации, скорости развертки потенциала, длительности контакта электрода с раствором до ее начала, а также от интенсивности перемешивания. Это свидетельствует о том, что процесс растворения чувствителен к поверхностной концентрации адсорбата и без контроля ее значения получение количественных данных о кинетике процесса невозможно. Методика проведения кинетических исследований анодного растворения металла при контролируемых значениях поверхностной концентрации каталитически-активных частиц была предложена в работе [8]. Она основана на нескольких предположениях, а именно: 1) после операции среза поверхностного слоя металла электрод полностью освобождается от катализатора; 2) последующая адсорбция каталитически активных частиц лимитируется скоростью их диффузии к поверхности электрода; 3) адсорбированные частицы не удаляются с поверхности металла в процессе его растворения.

Если пренебречь адсорбцией катализатора, которая имеет место в течение самой операции среза (длительность ее составляет около 0.02 с), а также нестационарным характером диффузии на начальном этапе контакта свежеобновленногоэлектрода с раствором, то зависимость величины поверхностной концентрации Г катализатора от времени контакта электрода с раствором после его обновления tможно описать, исходя из упрощенного варианта первого закона Фика Г = Dc1,t/5, (1) где D - коэффициент диффузии катализатора, 5 -толщина диффузионного слоя. Упрощение связано с приданием нулю значения приповерхностной концентрации адсорбирующихся частиц, что весьма вероятно в случае доминирования диффузионного контроля скорости адсорбции катализатора и если конечное значение 0 = Г/Гпрпр - значение Г, соответствующее монослою адсорбата) существенно меньше единицы. Непременным условием возможности использования этого подхода является доказательство того факта, что диффузионный контроль действительно имеет место и что адсорбированные частицы не удаляются с поверхности в процессе растворения металла. В предыдущих работах (см., например, [8]) для того, чтобы удостовериться в справедливости этих предположений, были использованы измерения i,t-кривых (f - здесь, как и выше, время, прошедшее после обновления поверхности) при разных значениях потенциала и концентрации катализатора сг. Если сделанные предположения верны, то в соответствии с уравнением Фика (1) измеренные кривые в координатах i=Дсони должны совпадать. Этот критерий и использовался нами для определения области потенциалов, в которой указанные предположения допустимы. В соответствии с этой задачей i,f-кривые при разных концентрациях сульфидсодержащей добавки ctбыли записаны при нескольких потенциалах, располагающихся между равновесным потенциалом золота в этом растворе (-0.26 В) и до Е = 0.65 В, положительнее которого начинается окисление тиокарбамида [2, 3]. Было установлено, что i,t-кривые, полученные при потенциалах отрицательнее максимума на поляризационной кривой (рис. 1) и разных концентрациях сульфид-ионов, в координатах i -f(c&bsol;f) были близки друг к другу. В качестве примера на рис. 2 в указанных координатах сопоставлены две кривые, полученные при Е - 0.4 В в растворах, отличающихся по концентрации сульфид-ионов в два раза. Видно, что они практически совпадают. Между тем кривые, полученные при потенциалах, располагающихся положительнее максимума (т.е. при Е > 0.5 В), сильно различались. Этот результат свидетельствует о том, что адсорбция каталитически активных частиц лимитируется скоростью их диффузии к поверхности электрода только при потенциалах, отрицательнее максимума тока. Косвенно он свидетельствует и о том, что при этих условиях адсорбированные частицы практически не удаляются с поверхности электрода в процессе его растворения. Чтобы получить более убедительное свидетельство этого, был проведен следующий эксперимент. В одном случае после обновления электрода последний сначала выдерживался в растворе в течение 50 с при токе, равном нулю (гальваностатический режим), а затем на него подавался потенциал Е - 0.45 В и еще в течение 50 с записывалась 1,(-кривая (рис. 3, кривая /). В другом случае после обновления электрода потенциал Е = 0.45 В включался сразу, и 1, £ - кривая записывалась в течение 100 с (рис. 3, кривая 2). Видно, что в обоих случаях через 100 с после обновления поверхности электрода одинаковому значению потенциала Е = 0.45 В соответствует примерно одно и то же значение тока. Из этого можно заключить, что в этот момент на электроде накопилось примерно одинаковое количество катализатора. Поскольку характер зависимостей тока от времени и количество прошедшего электричества в обоих случаях различались очень сильно, близость значений тока в конце обоих экспериментов говорит о том, что процесс растворения металла в рассматриваемых условиях существенного влияния на величину адсорбции катализатора не оказывает и ее скорость лимитируется в основном доставкой каталитически активных частиц к электроду. Эти результаты позволяют использовать для построения кинетических зависимостей процесса растворения золота при θ = const процедуру расчетов, подробно описанную в [8].