Федеральное агентство по образованию ГОУ ВПО
Тульский государственный педагогический университет
им. Л.Н. Толстого
кафедра органической и биологической химии
Курсовая работа
на тему:
Жиры. Аналитическая характеристика жиров
Выполнила:
студентка 3 курса группы В
естественнонаучного факультета
Алиева Джейран Октаевна
Научный руководитель:
ст. пр.
Бойкова Ольга Ивановна
Тула, 2007
Содержание
Введение
1.Простые липиды. Жиры
1.1 Кислоты жиров
1.2 Строение глицеридов
1.3 Физические свойства жиров
1.4 Химические свойства жиров
1.5 Аналитическая характеристика жиров
2. Сложные липиды
2.1 Фосфолипиды
2.1.1 Глицерофосфолипиды
2.2 Сфинголипиды
2.3 Гликолипиды
2.4 Стероиды
3. Липиды и строение биологических мембран
4. Применение жиров
Вывод
Литература
Приложение 1
Приложение 2
Введение
В настоящее время заметно возрос интерес к липидам со стороны всех направлений медико-биологической науки. Прежде всего - это связано с теми функциями, которые липиды выполняют в организме растений, животных и человека. Исследования трёх последних десятилетий показали, что липиды не только источник и форма хранения информации. Сложные липиды и их природные комплексы являются основой строения биологических мембран и в составе ее осуществляют важнейшие жизненные процессы. Установлено также, что серьезные поражения нервной системы, расстройства сердечно-сосудистой системы тесно связаны с нарушением обмена липидов
К липидам относятся жиры и жироподобные вещества растительного и животного происхождения. Обычно их разделяют на две группы: простые липиды - жиры и сложные липиды, к которым относятся фосфатиды, цереброзиды и фосфосфингозиды. В биохимии к липидам часто относят и свободные длинноцепочечные кислоты жиров, стерины, воски и некоторые другие, растворимые в неполярных растворителях органические соединения.
Окислительное расщепление запасных жиров – универсальный биохимический процесс, протекающий во всех живых организмах и поставляющий энергию, необходимую для жизнедеятельности. Такие запасные жиры или жиры депо наряду с белками и сахарами – один из трех основных питательных компонентов для млекопитающих.
В последние годы выявлена крайне важная роль сложных липидов в функционировании клеточных мембран. Все клеточные мембраны, помимо белка и полисахаридов, содержат от 20 до 75% полярных и нейтральных липидов (фосфолипиды, сфинголипиды, гликосфингозиды, холестерин и жирные кислоты). Липиды образуют бимолекулярный слой толщиной около 5 нм с полярными группами по обе стороны слоя, в которой вкраплены белковые субчастицы и структурированная вода. Этот слой регулирует обмен веществ в клетках, определяя проницаемость мембран для ионов, неэлектролитов и воды.
1. Простые липиды жиры
1.1 Кислоты жиров
В природе жирные кислоты в свободном виде встречаются редко. Однако, образуя эфирные или амидные связи, они входят в состав различных классов липидов, перечисленных выше, а также многих промежуточных продуктов метаболизма липидов. Целесообразно рассмотреть некоторые свойства жирных кислот, которые во многих отношениях сходны с другими амфифильными липидами. Биологически важные жирные кислоты характеризуются следующим:
1) являются, как правило, монокарбоновыми кислотами, содержащими одну ионизируемую карбоксильную группу и неполярную ациклическую неразветвленную углеводородную пень;
2) обычно содержат четное число атомов углерода, хотя в природе встречаются также и жирные кислоты с нечетным числом углеродных атомов;
3) представляют собой либо насыщенные соединения, либо соединения с одной пли несколькими двойными связями.
Для разделения смесей кислот, выделенных из жиров гидролизом, применяют разнообразные методы, например, кристаллизацию при низкой температуре, образование комплексов с мочевиной и с циклическими декстринами, противоточную экстракцию и хроматографию в различных формах, но главным образом хроматографию на бумаге и газожидкостную хроматографию. Последний метод наиболее перспективен.[2]
Из всех непредельных кислот, содержащихся а природных жирах, наиболее распространена олеиновая кислота. В очень многих жирах олеиновая кислота составляет больше половины от общей массы кислот, и лишь в немногих жирах ее содержится меньше 10%; олеиновая кислота присутствует во всех исследованных жирах. Две другие непредельные кислоты – линолевая и линоленовая – также очень широко распространены, хотя они присутствуют в значительно меньшем количестве, чем олеиновая кислота. В заметных количествах линолевая и линоленовая кислоты содержатся в растительных маслах; для животных организмов они являются незаменимыми кислотами. В природе непредельные кислоты встречаются только в цис-форме.[1]
1.1.1 Насыщенные жирные кислоты
Общепринятые названия и формулы некоторых насыщенных жирных кислот приведены в таблице 1. При нумерации углеродных атомов первым считается углерод карбоксильной группы (С-1) , тогда как остальные атомы нумеруется по порядку так, что последним является углерод концевой метильной группы. Температуры кипения и плавления жирных кислот возрастают с увеличением длины углеводородной цепи. Насыщенные жирные кислоты с четным числом углеродных атомов являются при комнатной температуре жидкостями, если общее число углеродных атомов меньше 10, или твердыми, если углеродная цепь более длинная.
Жирные кислоты являются слабыми кислотами и диссоциируют в водных растворах. Значения констант диссоциации для всех насыщенных жирных кислот очень близки между собой (рК=4,28), а также соответствующей константе уксусной кислоты (рК=4,76). Исключение составляет первый член этого ряда — муравьиная кислота (pК=3,75). Таким образом, в водных растворах неионизированная форма жирной кислоты (RCOOH) является преобладающей при рН<рК, тогда как ионизированная форма (RCOO~) преобладает при рН>р/К.
Смесь жирных кислот, получаемая при гидролизе липидов из различных природных источников, обычно содержит как насыщенные, так ненасыщенные жирные кислоты. В типичных липидах животного происхождения преобладающей насыщенной жирной кислотой является пальмитиновая (С16), второе место занимает стеариновая кислота (С18). Более короткие жирные кислоты (С14и С12), так же как и более длинные (до С28), встречаются лишь в небольших количествах. Жирные кислоты, содержащие 10 или меньше углеродных атомов, вообще редко встречаются в животных липидах.
Таблица 1.
Кислота | Число атомов углерода в цепи | Формула |
Предельные (жирные) кислоты | ||
КапроноваяКаприловая КаприноваяЛауроноваяМиристиноваяПальмитиновая Стеариновая Арахиновая | С6С8С10С12С14С16С18С20 | СН3(СН2)4СООНСН3(СН2)6СООНСН3(СН2)8СООНСН3(СН2)10СООНСН3(СН2)12СООНСН3(СН2)14СООНСН3(СН2)16СООНСН3(СН2)18СООН |
Непредельные кислоты | ||
ОлеиноваяЛенолеваяЛиноленоваяЭлеостеариноваяЭруковая | С18С18С18С18С22 | СН3(СН2)7СН=СН(СН2)7СООНСН3(СН2)4СН=СНСН2СН=СН(СН2)7СООНСН3СН2СН=СНСН2СН=СНСН2СН=СН(СН2)7СООНСН3(СН2)3СН=СНСН=СНСН=СН(СН2)7СООНСН3(СН2)7СН=СН(СН2)11СООН |
1.1.2 Ненасыщенные жирные кислоты
В названиях этих соединений по женевской номенклатуре число углеродных атомов в молекуле указывается таким же способом, что и для соответствующих насыщенных кислот (с помощью греческих числительных), а число двойных связей — с помощью суффиксов («ен» — одна, «диен»— две, «триен» — три связи и т. д.). Положение двойной связи обозначается номером ближайшего к карбоксильной группе атома углерода, участвующего в образовании этой связи. Так, например, двойная связь в цис-9-гексадсценовой кислоте находится между девятым и десятым углеродными атомами, а двойные связи в цис-9,12-октадекадиеновон кислоте расположены между 9—10 и 12—13 атомами углерода.
Ненасыщенность жирных кислот цис-ряда существенно влияет на их свойства. Так, с увеличением числа двойных связей значительно снижается температура плавления жирных кислот, возрастает их растворимость в неполярных растворителях (табл. 3.3). Все обычные ненасыщенные жирные кислоты, встречающиеся в Природе, при комнатной температуре — жидкости.
Одиночная двойная связь в жирных кислотах животного происхождения обычно находится в 9,10-положении. Двумя преобладающими мононенасыщенными жирными кислотами животных липидов являются олеиновая и пальмитоолеиновая.
СН3- (СН2)7-СН=СН - (СН2)7-СООН СН3-(СН2)5-СН=СН - (СН2)7 -СООН