Смекни!
smekni.com

Извлечение серебра из отработанных фотографических растворов (стр. 2 из 4)

Далее в реактор добавляют 98 % серную кислоту до тех пор пока при величине рН = 3,5 не достигается изоэлектрическая точка и через г» 1 мин начинается выпадение мелких частиц осадка. Через 10 мин содержимое реактора перекачивают в отстойник 7. Через 24 ч содержание серебра в жидкости над осадком составляет -<1 ррт. Жидкость перекачивают в резервуар 10, где ее нейтрализуют водным раствором NaOH до величины рН = 7 и направляют в сток. Осадок на дне резервуара 7 содержит, в пересчете на сухое вещество, 23 % Ag (в виде металла и галогенида) и 60% желатина. Его перекачивают в отстойник 11, откуда подают в камеру для прокаливания, где происходит испарение воды и образуется зола, содержащая серебро.

Усовершенствованный процесс, обеспечивающий 100 %-ное извлечение серебра, содержащегося в фотографических фиксирующих растворах. Способ является довольно простым и позволяет также удалять из раствора элементарную серу в количествах, эквивалентных количеству извлеченного серебра. Таким образом, удается не только извлекать дополнительное количество серебра, которое не могло быть выделено с помощью известных ранее методов, а также удалять из раствора элементарную серу. В результате этого достигается Дополнительный экономический эффект и ликвидируется вредное воздействие на окружающую среду, поскольку серебро является ядовитым, а соединения серы, окисляясь, приводят к поглощению кислорода.

Усовершенствованный процесс включает стадии обработки фиксирующего фотографического раствора в электролизере, имеющем анодное и катодное отделения, разделенные диафрагмой с размером пор 1-500 мкм при пропускании постоянного тока с катодной плотностью тока 0,011-55 А/м2. При этом на катоде осаждается оксид серебра, а иа аноде - эквивалентное количество элементарной серы. Предпочтительная температура проведения процесса 20-60 °С. Процесс электролиза может производиться в проточном режиме путем создания гидравлического напора между отделениями, обеспечивающего прохождение через диафрагму. В этом случае необходимо минимизировать количества фиксирующего фотографического раствора, подаваемого в электролизер, для того, чтобы предотвратить окисление серы и образование газообразного БОг.

На рис. 5 приведена схема аппарата для осуществления этого процесса. Аппарат состоит из электролизера / с катодным отделением 2, отделенным от анодного отделения 7 проницаемой диафрагмой И. Сосуд / предпочтительно изготавливать из инертного изолирующего материала, например из стекла, пластмассы или керамики. В резервуаре 14 хранится отработанный фиксирующий фотографический раствор 15, откуда он подается в катодное отделение 2 при открывании вентиля 16. Отработанный фиксирующий раствор содержит ионы натрия, аммония, тиосульфата, серебра и бромида.

После того как электролизер 1 заполняют отработанным фиксирующим фотографическим раствором, например тиосульфатом натрия, аммония или калия или их смесью, к аноду 9 и катоду 12 подается постоянный электрический ток. В результате электролиза в катодном отделении 2 осаждается оксид серебра 3, а в анодном отделении 7-эквивалентное количество элементарной серы 5. При проведении процесса в периодическом режиме предпочтительно загружать фиксирующий раствор в катодное отделение, а в анодное отделение заливать воду. Однако и в этом случае в оба отделения можно загружать фиксирующий раствор; но следует учитывать, что при этом может происходить образование нежелательных побочных продуктов, таких как SOa или Ag2S в анодном отделении.

После удаления желаемого количества серебра в виде оксида серебра из раствора (предпочтительно 100 %-ное выделение) открывают вентиль 4 для слива жидкости из катодного отделения и вентиль 6 - для слива из анодного отделения. Осадки S и AgO отделяют от раствора путем фильтрования или другим способом; отделенные растворы отбрасывают. Затем открывают вентиль 16 и из резервуара 14 в электролизер / подают новую порцию фиксирующего раствора. Таким образом, происходит извлечение серебра по периодическому процессу.

В периодическом процессе гидравлический напор h между отделениями электролизера отсутствует и слив из трубки 8 не происходит. В таком варианте процесса существует возможность, что при использовании недостаточно разбавленного раствора из него будет происходить выделение SOa, либо могут образовываться другие нежелательные побочные продукты.

Предпочтительно проводить процесс в электролизере 10 в проточном режиме при такой скорости подачи раствора, которая обеспечивает 100%-ное извлечение серебра, содержащегося в фиксирующем растворе, в виде оксида серебра. При работе в непрерывном проточном режиме вентиль 16 открывают настолько, чтобы обеспечить требуемую скорость подачи раствора в анодное либо в катодное отделение. При наличии достаточного гидравлического напора на диафрагме 11 раствор будет проникать через нее в другое отделение с желаемой скоростью; после обработки раствор выводят из аппарата по сливной трубке 8.

На приведенной схеме показан предпочтительный вариант, при котором обрабатываемый раствор подается в катодное отделение. Можно также подавать раствор в анодное отделение и выводить обработанный раствор из катодного отделения (с соответствующей заменой трубопроводов для подачи и слива раствора). Необходимо также иметь в виду, что между центральным отделением и наружными отделениями существует гидравлический напор А.

Эффективность процесса в описанном электролизере может быть увеличена за счет введения в катодное отделение дополнительного электрода 17 и пропускания переменного тока между электродами 12 и 17, как показано на схеме. В результате этого повышается степень извлечения серебра. Постоянный ток на электроды 9 к 12 подается от батареи 10, а переменный ток на электроды 17 и 12 от источника тока 13.

Источники постоянного и переменного тока электрически изолированы Друг от друга. Частота переменного тока может составлять 1-800 Гц, предпочтительно 10-120 Гц при наиболее предпочтительном для практических целей значении 60 Гц.

Плотность Переменного тока может составлять 1,1-215 А/м4, предпочтительно 11-110 А/м2 н особенно предпочтительно 32-81 А/ма.

Для осуществления способа на электроды подают переменный ток с частотой 0,5-800 Гц при плотности тока 11-215 А/м2, в результате чего на электродах, погруженных в раствор происходит выделение AgO. Электролиз можно проводить и при плотностях тока более 215 А/м2, однако в этом случае будет также происходить и разложение раствора, препятствующее его повторному использованию. Этот метод может быть использован также и для извлечения серебра в виде AgO из других растворов.

Рис. 1

Процесс проводят в электролизере, имеющем анодное и катодное отделения, разделенные диафрагмой. Выделение серебра из отработанного фиксирующего раствора происходит в катодном отделении, а в анодное отделение заливают отработанный или свежий фиксирующий раствор, либо раствор уже подвергнутый электролизу.

На рис. 1 представлена схема аппарата для осуществления этого процесса. Электролизер состоит из катодного отделения 3, анодного отделения 5, катода 18, анода 2 и диафрагмы, отделяющей катодное отделение 3 от анодного отделения 5. Отработанный фиксирующий раствор перекачивают из резервуара 24 в циркуляционный резервуар 9 с помощью насосов 14 (необходимо отметить, что линия, идущая от насоса 14, далее разделяется на две линии; по одной раствор подается в катодное отделение 3, а по другой в резервуар 9); из резервуара 9 раствор поступает в катодное отделение 3. Отработанный фиксирующий раствор перетекает в резервуар 24 из резервуара 22 по линии 23. Резервуар 22 предназначен для проведения фиксажа и фактически не относится к аппаратуре для проведения описываемого процесса.

Отработанный фиксирующий раствор из циркуляционного резервуара 9 подается насосом 6 по линии 7 в катодное отделение 3, а возвращается из катодного отделения в резервуар 9 по линии 8. Таким образом, отработанный фиксирующий раствор циркулирует между циркуляционным резервуаром 9 и катодным отделением 3. Анодное отделение 5 предварительно заполняют фиксирующим раствором. После того, как введено определенное количество отработанного фиксирующего раствора включается циркуляционный насос 6 и подготовка к электролизу на этом заканчивается.

Как уже было сказано, циркуляционный насос 6 предназначен для циркуляции отработанного фиксирующего раствора между катодным отделением 3 и циркуляционным резервуаром 9. Если объем катодного отделения 3 меньше, чем объем фиксирующего раствора, подаваемого на электролиз, насос 6 используют для регулирования количества раствора, подаваемого из циркуляционного резервуара 9 в катодное отделение 3. С Другой стороны, если объем катодного отделения 3 больше, чем объем фиксирующего раствора, подаваемого на электролиз, в использовании насоса 6 нет необходимости.

При пропускании через систему электрического тока в катодном отделении 3 происходит выделение серебра и регенерация раствора. После проведения электролиза в течение определенного периода времени (предпочтительно до тех пор пока остаточное содержание серебра в растворе не составит 0,5 г/л) раствор из анодного отделения выводят из системы в виде отхода. Раствор из катодного отделения по линии 13 возвращается в резервуар с постоянным уровнем жидкости 12, а оттуда по линии // в циркуляционный резервуар 9.

Объем резервуара 12 с постоянным уровнем жидкости определяется количеством раствора, выводимого из системы, объемом анодного отделения, концентрацией ионов сернистой кислоты в фиксирующем растворе, продолжительностью электролиза и плотностью электрического тока. В связи с этим необходимо отметить,, что постоянная скорость подачи дополнительного раствора достигается в том случае, когда объем, выводимый из анодного отделения, объем резервуара 12, объем регенерирующего раствора из резервуара 20 и объем анолита - все равны между собой.