Показанные на схеме мембраны 22, 23, 24 и 25 представляют собой анион-проницаемые мембраны. В анодной камере 37 помещен анод, а в катодной камере 28 — катод. Камера для травильного раствора 31 расположена рядом с катодной камерой 28 и отделена от нее мембраной 25. Две концентрационные камеры 33 и 35 находятся между анодной камерой 37 и камерой для травильного раствора 31. Первая концентрационная камера образована ионпроницаемыми мембранами 23 и 24, а вторая — ионпроницаемыми мембранами 22 и 23. В качестве мембран 22, 23 и 24 могут быть использованы любые мембраны, через которые проникают анионы. Анод и катод 26 соединены с источником постоянного тока, не показанным на схеме. Цифрой 2 обозначено устройство для вывода твердых веществ.
Рис. 3. Схема процесса выделения серной кислоты из травильного растворас помощью электролиза: / — твердый оксид железа; 2—5, 9 — 13, 15—17, 21 — 38 (в тексте); 6 — 1 н. NaOH; 7 — рецикл травильного раствора; 8 — рецикл католита; 14а, 146 — концентрирующие камеры I и II; 18 — подача свежей воды или концентратора II; 19 — 5—6 н. HjSO, или полисульфонат; 20 — выделенная серная кислота, возвращаемая на стадию травления; 39 — рецикл из концентрирующей камеры II; 40 — рецикл из концентрирующей камеры I; 41 — рецикл анолита
К каждой из камер подходят линии для подачи и вывода растворов. Входная линия 36 и выходная линия 21 позволяют проводить циркуляцию анолита в анодной камере 37. Линии 34 и 17 предназначены для циркуляции электролита в концентрационной камере 35. По линии 16 выводится выделенный товарный продукт — серная кислота. Линии 32 и 15 предназначены для циркуляции электролита в концентрационной камере 33, а линии 30 и 12 — для циркуляции раствора в камере для отработанного раствора 31. Указанные линии трубопроводами соединены с устройством для вывода твердых веществ 2.
По трубопроводу 3 в систему подается отработанный травильный раствор, а по трубопроводу 4 в случае необходимости подается хелатирующий агент. Цифрой 5 обозначен уравнительный резервуар для смеси травильного раствора с хелатирующим агентом. По трубопроводу // в травильный раствор подается газ, например воздух; цифрой 10 обозначено устройство для оказания вибрационного или пульсациониого воздействия на сырье перед тем как оно по трубопроводу 12 поступит в камеру для травильного раствора 31. Линии 27 и 9 предназначены для циркуляции католита в катодной камере 28.
В ходе проведения процесса отработанный травильный раствор вместе с хелатирующий агентом циркулирует в камере 31, а водный раствор с повышенной концентрацией серной кислоты циркулирует в анодной камере 37. Водный раствор католита, предпочтительно гидроксида щелочного металла, циркулирует в катодной камере 28, а электролит, предпочтительно водный раствор серной кислоты или обедненный травильный раствор, циркулирует в первой концентрационной камере 33.
Обедненный травильный раствор представляет собой исходный раствор, из которого путем предварительной обработки удалена свободная кислота и основная часть соединений железа. Такой раствор, в частности, выводится из камеры для отработанного раствора 31. Раствор из концентрационной камеры 33 выходит по линии 32 и по линии 17 подается во вторую концентрационную камеру 35.
Замкнутая пятикамерная система позволяет проводить концентрирование, регенерацию и выделение серной кислоты из отработанного травильного раствора. Сернокислотный травильный раствор, используемый для обработки железных и стальных изделий и содержащий ионы металлов, циркулирует в камере 31. Католит в камере 28 представляет собой I н. водный раствор гидроксида натрия, а анолит в камере 37 — водный раствор серной кислоты.
Циркуляция во всех камерах проводится по трубопроводам с помощью насоса. Через систему протекает постоянный ток, подаваемый на анод и катод 26. Катионы и анионы, содержащиеся в растворе мигрируют к катоду и аноду соответственно. Анионы сульфата и гидроксила направляются к аноду, а катионы водорода и железа из камеры для травильного раствора направляются к катоду. В ходе всего процесса система остается электрически нейтральной.
В анодной камере 37, содержащей разбавленный раствор серной кислоты, происходит образование ионов водорода, которые перемещаются по направлению к катоду 26 до тех пор, пока они не достигнут анионпроницаемой мембраны 22, которая препятствует прохождению катионов. Тем не менее, значительная часть ионов водорода, образующихся на аноде, проникает через мембрану 22 и попадает во вторую концентрационную камеру 35. Аналогичным образом часть ионов водорода из камеры 35 будет перемещаться по направлению к катоду и попадать в первую концентрационную камеру 33, а часть ионов водорода из камеры 33 с небольшой скоростью проникает в камеру для отработанного раствора 31; в отработанном растворе содержатся в основном катионы железа, водорода и анионы сульфата.
Из камеры 31 анионы сульфата мигрируют по направлению к аноду и, проходя через анионпроницаемую мембрану 24, попадают в первую концентрационную камеру 33. При соединении этих анионов с присутствующими в камере 33 ионами водорода происходит образование серной кислоты. Аналогичным образом происходит обогащение раствора серной кислотой и во второй концентрационной камере. За исключением части ионов водорода катионы, образующиеся в камере 31, не могут проникнуть через мембрану 25 и остаются в камере 31.
В катодной камере 28, содержащей водный щелочный раствор католита, предпочтительно гидроксид щелочного металла, например гидроксид натрия или калия, происходит образование анионов гидроксила.
Ионы гидроксила мигрируют по направлению к аноду и через анионпроницаемую мембрану 25 попадают в камеру для травильного раствора 31.
После удаления из травильного раствора основного количества свободной кислоты в результате миграции ионов в камере 31 происходит соединение катионов железа и анионов гидроксила с образованием осадка гидроксида и (или) оксидов железа. Осадок вместе с циркулирующими растворами выводится по линии 30 в устройство для вывода твердых веществ 2 и удаляется из системы в виде магнетита высокой чистоты.
Анионы сульфата мигрируют из первой концентрационной камеры через мембрану 23 и попадают во вторую концентрационную камеру 35. Несвязанные анионы из камеры 35 через ионпроницаемую мембрану 22 поступают в анодную камеру 37, где связываются с ионами водорода, образующимися на аноде и мигрирующими по направлению к катоду 26. Таким образом, в анодной камере 37 происходит образование серной кислоты. Серная кислота образуется также в концентрационных камерах 33 и 35 н соответствующие анолит и электролиты имеют повышенное содержание серной кислоты.
В описанной схеме циркуляции раствор, выходящий из камеры 31 по линии 30, проходящий через устройство 2, и имеющий пониженное содержание кислоты, соединений железа и сульфатов, обогащается серной кислотой в первой концентрационной камере 33, во второй концентрационной камере 35 и в анодной камере 31, в которой концентрация серной кислоты в растворе становится максимальной.
На рис. 4 показана камера для травильного раствора в разрезе. Разрез по линии А—А на рис. 4.
Процесс, разработанный 3. Л. Бур-ком (патент США 4 149946, 17 апреля 1979 г.; фирма ".Дэвис Уокер Корпорейшн"), предназначен для регенерации отработанного.
Рис. 4. Вид камеры для травильного раствора в разрезе (разрез выполнен по линии А—А
В катодную камеру загружают отработанный травильный раствор, а в анодную камеру — водный раствор сульфата аммония; через систему пропускают электрический ток. На катоде происходит осаждение железа. Ион аммония проникает через мембрану в катодную камеру, где образуется раствор сульфата аммония. Сульфат аммония в анодной камере превращается в серную кислоту, которая может быть использована для травления. Раствор сульфата аммония из катодной камеры возвращается в анодную камеру и после добавления свежей порции отработанного травильного раствора процесс повторяется.
Процесс можно проводить в электролизерах различной конструкции. При этом может быть использован любой кислотостойкий материал, например пластмассы или стекловолокно. Электролизер наиболее, простой конструкции состоит из анодной и катодной камер, разделенных катионселективной мембраной. Другая конструкция показана на рис. 5. Электролизер 7 состоит из центральной катодной камеры 17 с катодом 13 и двух боковых анодных камер 5 и 16 с анодами 6 и 15. Катодная камера отделена от анодных камер катионселективными мембранами 11 и 14. В резервуаре для католита 4 находится отработанный травильный раствор, который циркулирует через катодную камеру с помощью насоса 3. В резервуаре для анолита 1 находится раствор сульфата аммония, который циркулирует через анодные камеры с помощью насоса 2. На катоде осаждается железо 12.
Несколько электролизеров могут быть соединены последовательно или параллельно. Описанная конструкция электролизера позволяет использовать обе стороны катода. Можно использовать несколько последовательно соединенных комбинаций из анодных и катодных камер; при этом каждая пара соседних камер разделяется катион-селектнвной мембраной. В этом случае у всех электродов за исключением концевых используются обе стороны и требуется меньшее число анодов, чем в случае использования трехкамерных электролизеров с тем же общим числом катодов.
Отработанный травильный раствор, содержащий сульфат двухвалентного железа и сульфат аммония, непрерывно подается в катодную камеру первого электролизера и через все катодные камеры проходит в катодную камеру последнего электролизера. Регенерированный раствор серной кислоты непрерывно выводится из анодной камеры последнего электролизера.