Если оценивать диапазон работоспособности предлагаемой методики применительно кСПГ, то он определяется в первую очередь невозможностью удержать гель
Рис.3. Динамика набухания гидрогеля (образец Б) в водном растворе NaClпри ступенчатом изменении концентрации: 3,0 (2); 0,90 (2); 0,27 (3); 0,08 (4); 0,034 (5) и 0,015 н. (в)
Рис. 4. Зависимость скорости перемещения поршня от давления на поршень, а: образец В, w=102(1), 37мл/г (2), продолжительность набухания 51 (1) и 7 сут (2). б: 3 — свободное движение поршня, 4 - движение поршня с подключением г; вибратору
Рис.5. Зависимость давления набуханияобразца Б в 0,01 н. растворе NaCl от степени набухания в условиях равновесия с очень высоким набуханием или при высоком давлении в замкнутом для него пространстве между поршнем и дном цилиндра.
Проведенные эксперименты показывают, что величины 30 кПа и 600 — 700 мл/г являются предельными для данного варианта. Отметим, что в литературе, где измерениям давления набухания гидрогелей уделеносерьезное внимание, данные для гелей с такими показателями отсутствуют. Изучение функции λв области еще больших значений набухания требует каких-тоновых подходов.
Необходимо отметить, что наряду с «диагностической» ценностью зависимости набухания СПГ от давления она имеет самое непосредственное отношение к их практическим использованиям. Например, в случае применения СПГ в качестве почвенноговлагоабсорбера или в растениеводческих задачах необходимо, чтобы давление набухания и прямо связанный с ним термодинамический потенциал влаги в СПГ согласовались с аналогичными возможностями почвы и растений [10]. Такой подход позволяет анализировать свойства и поведение СПГ в реальных условиях примененияс единых, термодинамических позиций, причем функция λ (w) играет здесь ключевую роль.
Анализ зависимостей я (I) показывает, что время релаксации давления набуханиятя, как и т возрастает с увеличением размера образца. Типичное для используемой конструкции прибора значение эффективного размера Re, который определяется радиусом и толщиной цилиндрического слоя геля, составляет ~1 см, а значение тя = 70 ч. т. о. весьма велико, причем возможности его снижения за счет уменьшения массы образца в данном случае ограничены.
Наблюдаемые кинетические характеристики набухания могут быть интерпретированы в рамках имеющихся теоретических подходов. Согласно работе [11], т и равновесный размер образца при свободном набухании Л„ связаны соотношением где D- коэффициент кооперативной диффузии.
Используя тот же подход, можно показать, что для давления набухания справедливо аналогичное уравнение
Обработка экспериментальных зависимостей тя(Ле), согласно уравнению (2), приводит к величине D= (2,4±0,6) -10~7 см2/с, которая близка к опубликованным значениям коэффициентов кооперативной диффузии [11-13]. Напротив, зависимости для того же образца в рамках уравнения (1) дают существенно более высокое значение D= (1,0±0,2) -10-5 см2/с, которое в свою очередь хорошо согласуется с величиной полученной из динамики длины волны рельефа, возникающего на поверхности СПГ в результате потери механической устойчивости при набухании [14].
Отмеченное расхождение в величинах Dотчасти может быть связано с тем, чтов качестве размера цилиндрических образцов СПГ использовали радиус шара с тем жеобъемом, хотя вряд ли это может объяснить расхождение на порядки величин. Более существенным может быть то, что имеющиеся теоретические соотношения [11] описывают процесс набухания при малых отклонениях исходного размера частиц от равновесного. В наших же экспериментах они различаются в 2-4 раза, причем в состояниях, далеких от равновесия, гель теряет механическую устойчивость [14, 15], и набухание нельзя свести только к кооперативной диффузии фрагментов сетки в растворителе.
Проведенный беглый анализ динамики набухания СПГ показывает, что для ееболее глубокого понимания необходимы дополнительные исследования, поскольку здесь имеются нетривиальные эффекты. В качестве экспериментальной базы этих исследований вполне могут быть использованы развитые в данной работе методы.
В работе использовали СПГ на основе полиакриламида, содержащего небольшое количество (<30 мол.%) звеньев акриловой кислоты, образующих при диссоциации связанные с сеткой заряды, что в значительной мере определяет масштаб набухания. Образцы получали двумя типичными для таких полимеров методами.
Образец А.Трехмерную сополимеризацию смеси акриламида, акриловой кислотыи NN-метилен-бис-акриламида как разветвителя, очищенных как в работе [16],проводили в 10%-ном водном растворе мономеров под действием инициирующей системы, состоящей из персульфата аммония и тетрамотилэтилендиамина (2 : 1 в молях). Содержание разветвителя в сумме мономеров составляло 0,13 мол.%, концентрация инициатора 8,8-10-4 моль/л, температура 45°. Конверсия мономеров по даннымспектрофотометрии превышала 99%.
Образец Б. Радиационное сшивание линейного полиакриламида, содержащего 25— 30% тех же ионогенных групп, проводили в 5-10Уо-ных водных растворах под действием Y-лучей 60Со в стандартных установках при дозах до 10 Мрад. Содержание зольфракции в радиационно сшитых образцах, определенное весовым методом, было <10-15%.
Полученный тем или иным методом гидрогель механически измельчали и использовали для измерений непосредственно либо после высушивания на воздухе допостоянного веса.
Все описанные измерения проводили при комнатной температуре.
СПИСОК ЛИТЕРАТУРЫ
1. Huglin М. В., Zakaria М. В. // J. Appl. Polymer Sci. 1983. V. 28. № 7. P. 2451.
2. Mateescu M. A., Schell H. D., Dimonie M., Todireanu S., Maior O. // Polymer Bull. 1984. V. 11. № 5. P. 421.
3. Дубровский С. А., Афанасьева M. В., Рыжкин М. А., Казанский К. С. //Высокомолек. соед. А. 1989. Т. 31. № 2. С. 321.
4. Ricka J., Tanaka Т. // Macromolecules. 1984. V. 17. № 12. P. 2916.
5. Marlnsky J. А.//Phys. Chem. 1985. V. 89. № 24. P. 5294.
6. Flory P. J. Principles of Polymer Chemistry. Ithaca; N. Y., 1953. 672 p.
7. Hydrogels for Medical and Related Applications/Ed. by Andrade J. D. Washington, 1976. № 31.
8. Borchard W., Embergen A., Schwarz J. // Angew. Makromolek. Chemic. 1978. B. 66. S. 43.
9. Сурдутович Л. И., Тагер А. А., Овчинникова Г. П., Хомякова Н. И., Сафонов Я. А.Ц Высокомолек. соед. А. 1972. Т. 14. № 2. С. 324.
10. Казанский К. С, Ракова Г. В., Ениколопов Н. С, Агафонов О. А., Романов И. А., Усков И. Б. Вестн. с.-х. науки. 1988. № 4(380). С. 125.
11. Tanaka Т., Fillmore G. // J. Chem. Soc. 1979. V. 70. № 3. P. 1214.
12. Peters A., Candau S. // Macromolecules. 1986. V. 19. № 7. P. 1952.
13. Munch J. P., Candau S., Duplessix R., Picot C, Herz J., Benolt H.//L Polymer Sci, Polymer Phys. Ed. 1976. V. 14. № 6. P. 1097.
14. Дубровский С. A. // Докл. АН СССР. 1988. Т. 303. № 5. С. 1163.
15. Tanaka Т., Sun S.-T., Hirokawa Y., Katayama F., Kufera J., Hiroce Y., Amija Т.ЦNature. 1987. V. 325. № 6107. P. 796.
16. Watkin J. E., Miller R. A. // Anal. Biochem. 1970. V. 34. № 2. P. 424.