Смекни!
smekni.com

Использование комплексов полиамфолита этиламнокротонатаакриловой кислоты с поверхностно-активными веществами для извлечения 90Sr (стр. 3 из 12)

В разбавленных растворах при добавлении к полиэлектролиту противоположно заряженного ПАВ (до точки минимума вязкости) получается система, напоминающая полимерное мыло. Часть зарядов полииона нейтрализована заряженными группами ионов ПАВ, тогда как длинноцепные гидрофобные радикалы ПАВ, стремясь избежать контакта с водой, образуют неполярные ядра. Эти ядра поддерживаются в воде свободными зарядами полиэлектролита – образуется мономолекулярная мицелла. Добавление органического растворителя приводит к разрушению гидрофобного ядра мицеллы, что сопровождается разворачиванием компактных клубков поликомплекса и увеличением их размеров.

Гидрофобизация комплексов полиэлектролит–ПАВ обусловливает их компактизацию и выделение в отдельную фазу. Так, добавление ПАВ к полиэлектролиту приводит к сильному снижению приведенной вязкости, что свидетельствует об уменьшении размера комплексных частиц. Однако, дальнейшее увеличение содержания ПАВ может привести к гомогенизации системы и возрастанию вязкости. Это зависит от баланса между энергиями электростатического и гидрофобного взаимодействий.

На глубину комплексообразования и стабильность ассоциатов полимер-ПАВ влияют такие факторы как длина цепи полимера, гибкость, конформация, микроструктура полимерных молекул, свойства среды (концентрации компонентов, степень их ионизации, температура, рН и ионная сила среды, состав растворителя). Огромное количество работ посвящено исследованию комплексов полимер-ПАВ и выяснению влияния перечисленных выше факторов на свойства образующихся ассоциатов [[6]].

Смешивание разбавленных водных растворов поликислот и полиоснований с противоположно заряженным ПАВ приводит к заметному изменению рН раствора и появлению опалесценции раствора вплоть до выпадения осадка. Такое поведение смесей полиэлектролитов с соответствующими детергентами авторы объясняют, по аналогии с образованием солевых комплексов между противоположно заряженными макромолекулами [[7], [8]], с образованием комплекса ПЭ-ПАВ, который сопровождается выделением ионов низкомолекулярной кислоты и щелочи:

СООН + ~ →-СОО - ~ + Н+ (1)

NH2 + ~ → ~ +NH2 + ОН- (2)

Необходимо отметить, что реакция взаимодействия слабых поликислот и полиоснований с ПАВ [[9]] являются уникальными, так как при комплексообразовании с ПАВ слабая поликислота вытесняет сильную поликислоту, а слабое полиоснование – сильное полиоснование. Равновесие аналогичных реакций (1) и (2) для низкомолекулярных модельных систем практически полностью сдвинуто влево. Отсюда можно заключить, что процесс электростатического взаимодействия ПЭ с ПАВ не происходил бы в заметной степени, если бы он не стабилизировался дополнительно гидрофобными взаимодействиями неполярных участков вступающих в реакцию связывания.

Авторы полагают, что электростатическое связывание дифильных ионов детергента с полиэлектролитной цепью сопровождается существенной гидрофобизацией макромолекул. Показано, что величина гидрофобности (m), рассчитанная с учетом электростатического связывания ПАВ полиэлектролитом, симбатно возрастает с увеличением степени электростатического воздействия (θ).

О конформационных превращениях макромолекул полиэлектролитов при их взаимодействии с ПАВ авторы работ судили по изменению их приведенной вязкости и мутности. Показано, что введение в раствор синтетического полиэлектролита противоположно заряженных ПАВ приводит к заметному понижению приведенной вязкости и возрастанию мутности.

А.В. Билалов с сотрудниками сообщили в работе о новом эффекте, заключающемся в скачкообразном увеличении активности ионов ПАВ и уменьшении активности противоионов полиэлектролита. При достижении определенного значения концентрации ПАВ в растворе в области насыщения объема макроиона молекулами ПАВ происходит «выброс» значительной части ионов ПАВ из комплекса и их обратное замещение неорганическими противоионами.

ПАВ и полимеры в их смешанных водных растворах могут образовывать ассоциаты (комплексы), стабилизированные электростатическими, ион-дипольными, гидрофобными и водородными связями. Противоположно заряженные ПАВ и полиэлектролиты образуют слабодиссоцирующие соли – электростатические стабилизированные комплексы уже при весьма низких по сравнению с ККМ концентрациях ПАВ.

В работах исследована реакция комплексообразования синтетических полимерных амфолитов на примере статического сополимера 1,2,5 – триметил-4винилэтинил пиперидола-4 и акриловой кислоты (ПА1) и регулярного сополимера стирола и N,N-диметиламинопропил моноамида малеиновой кислоты (ПА2) с анионным ПАВ (ДДС) и катионным ПАВ (цетилтриметиламмоний бромид (ЦТАБ)) в воде и водно-спиртовых растворах. Аналогично взаимодействию индивидуальных поликислот и полиоснований с ПАВ катионный детергент реагирует с кислотными группами ПА1 и ПА2 с выделением гидроксильных ионов. Установлено, что связывание как анионного, так и катионного ПАВ полиамфолита (ПА1) осуществляется за счет электростатических взаимодействий, а компактная структура поликомплекса стабилизируется гидрофобными взаимодействиями длинных алкильных частей ПАВ и удерживается в растворе незакомплексоваными частями сополимера. Отмечено, что поведение ПА2, содержащего гидрофобные стирольные участки, отличаются от поведения ПА1 в присутствии ПАВ: добавление даже незначительного количества ЦТАБ вызывает падение вязкости ПА2 вплоть до образования нерастворимого осадка, что вызвано сильной гидрофобизацией макромолекул, приводящей к формированию глобулярных частиц.

Путем изменения состояния ионизации кислотных и основных групп ПА можно регулировать глубину превращения реакции и в широких пределах варьировать состав, структуру и свойства полиэлектролитных комплексов.

Работа посвящена исследованию образования полиамфолитов статического и регулярного строения с ПАВ. В этих работах основное внимание уделено фактам образования комплексов ПА-ПАВ. Высвобождение ионов ПАВ, красителей и ионов металлов при приближении к ИЭТ объясняется большой кооперативностью реакции комплексообразования между противоположно заряженными функциональными группами самого ПА. По мнению авторов макромолекулы ПА в ИЭТ образуют единую кооперативную систему, напоминающую структуру частиц НПЭК. Связывание ионов ПАВ при удалении от ИЭТ можно рассматривать как процесс разрушения единой кооперативной системы с последующим взаимодействием ПА с ионами ПАВ.

При исследовании взаимодействия синтетических ПА и полибетаинов с СПЭ и ПАВ в водных растворах показано, что образование комплекса в этих системах контролируется соотношением внутримолекулярного и интерполимерного солеобразования между противоположно заряженными функциональными группами и возникающими при этом дефектами структур в виде «петель» и «хвостов».

Установлено, что в системе МПВ-ПАВ электростатическое взаимодействие полиамфолита с ПАВ, стабилизированное гидрофобными взаимодействиями сопровождается изменением гидродинамических размеров молекул. Установлено увеличение гидродинамического размера полиамфолита, находящегося в ИЭТ, при его взаимодействии с ПАВ в результате изменения баланса свободной электростатической энергии. Натриевая соль полиамфолита показывает высокую комплексообразующую способность с ЦТАБ. Обнаружено возрастание солюбилизирующей способности водного раствора слабоионизированного полиамфолита при его взаимодействии с ПАВ, причем эффективность солюбилизации малорастворимого красителя возрастает с увеличением степени ассоциации полиамфолита с ПАВ.

Комплексообразование синтетических полиэлектролитов (ПАК, ПМАК, ПЭИ) с мицеллами ПАВ проведены в работе, где установлено, что степень электростатического связывания мицелл ПАВ с СПЭ гораздо больше, чем при взаимодействии СПЭ с ПАВ в молекулярном состоянии.

Таким образом, из вышеприведенных литературных данных следует, что взаимодействие амфотерных полиэлектролитов с противоположно заряженными ПАВ имеет свои особенности и сопровождается сильной компактизацией частиц поликомплекса за счет электростатического связывания ионогенных ПАВ полиамфолитами. Напротив, гидрофобное связывание молекул ПАВ приводит к разворачиванию макромолекулярных клубков. Степень проявления этих эффектов зависит от степени дифильности макромолекул, природы ПАВ, а также от степени ионизации функциональных групп полиамфолитов.


1.3 Ассоциаты поверхностно-активных веществ с гидрогелями

На сегодняшний день можно выделить ряд основных закономерностей, характеризующих особенности процессов, протекающих при ассоциации линейных макромолекул с ПАВ вне зависимости от их природы:

1. наличие конформационных переходов в полимерной цепи, таких как «клубок – глобула» или «клубок – развернутая цепь»;

2. расширение или смещение области фазового разделения в системе полимер – вода при добавлении раствора ПАВ;