Ионика твердого тела как область науки, лежащая на пересечении физики и химии твердого тела, электроники и электрохимии, кристаллографии и неорганической химии, материаловедения и энергетики получила широкое признание в последние 10-15 лет. В советском союзе начало исследованиям твердых электролитов было положено в 60-е годы в Институте электрохимии УрО РАН, Екатеринбург (школа акад. СВ. Карпачева; профессора В.Н. Чеботин, М.В. Перфильев и С.Ф. Пальгуев), СПбГУ (проф. А.Н. Мурин), МГУ (работы акад. Ю.Д. Третьякова), Институте новых химических проблем, Черноголовка (проф. Е.А. Укше, д-р хим. наук Н.Г. Букун), Институте электрохимии, Москва (канд. техн. наук B.C. Боровков, д-р хим. наук Ю.Я. Гуревич). В последние годы в связи с открытием большого числа новых материалов с высокой ионной проводимостью, созданием макетов полностью твердотельных топливных элементов, новыми теоретическими подходами к изучению явлений аномально быстрого ионного переноса в конденсированных средах и использованием новых мощных экспериментальных методик - в мире отмечается все более возрастающий интерес к суперионным проводникам и устройствам на их основе. Электролиты твёрдые, вещества, в которых электропроводность осуществляется движением ионов одного знака - катионами или анионами. Ионы передвигаются по свободным позициям в структуре в-ва, разделенным невысокими потенц. барьерами (0,1-0,5 эВ). Количество позиций, которые могут занимать ионы проводимости, намного больше кол-ва самих ионов. Кроме того, эти позиции могут различаться по степени заселенности ионами. Например, в элементарной ячейке
где А - константа, Т - абс. т-ра, Еа - энергия активации, k -константа Больцмана. Значение
Характеристика поликристалических твердых электролитов
Электролит | Подвижный ион | | Ea,эВ |
| Ag+ | 337 (423 K) | 0,101a |
RbAg4I5 | Ag+ | 28 | 0,104 |
Ag6WO4I4 | Ag+ | 4,2 | 0,248 |
(C5H5NH)Ag5I6 | Ag+ | 21 (323 K) | 0,198б |
Cs2Ag3Br3I2 | Ag+ | 0,1 | 0,38 |
Cu4RbCl3I2 | Cu+ | 47 | 0,115 |
Na2O x 10Al2O3e | Na+ | 3,3 | 0,140 |
Na2O x 10Al2O3 | Na+ | 0,5 | 0,148 |
Na3Zr2Si2Р012 | Na+ | 14 (573 K) | 0,246д |
Nа3Sс2(РO4)3 | Na+ | 19 (573 K) | 0,144в |
Na5DySi4O12 | Na+ | 0,50 | 0,208 |
CsHSO4 | H+ | 1,8 (435 K) | 0,33ж |
HUO2PO2 x 4H2O3 | H+ | 0,32 | 0,32 |
H3PW12O40 x 19H2O3 | H+ | 1,20 | 0,432 |
Cs3PW12O40 x 10H2O3 | H+ | 1,6 | 0,223 |
Sb2O5 x 5,43H2O3 | H+ | 0,75 | 0,16 |
0,75Li4GeO4 x 0,25Li3PO4 | Li+ | 9,1 (573 K) | 0,42 |
Sr0,8La0,2F2,2 | F- | 0,11 (573 K) | 0,196 |
0,91ZrO2 x 0,09Sc2O3 | O2- | 30 (1273 K) | 0,43 |
(Bi2O3)0,8(SrO)0,2 | O2- | 0,6 (773 K) | 0,8 |
Протоно-проводящие электролиты твёрдые - в осн. кристаллогидраты твердых орг. и неорг. к-т и их солей, в к-рых перенос Н осуществляется либо по сетке водородных связей молекул Н2О (механизм туннельного перехода), либо перемещением иона гидроксония Н3О+ (прыжковый механизм), либо по молекулам, адсорбир. на межзеренных границах поликристаллич. материала. Исключение составляют безводные гидросульфаты и гидроселенаты щелочных металлов (напр., CsHSO4 и CsHSeO4), к-рые приобретают высокую ионную проводимость при т-рах выше структурного фазового перехода, когда число возможных мест локализации протонов оказывается вдвое больше числа самих протонов. Обладают протонной проводимостью и мн. полимерные структуры. Большинство Ag+-проводящих электролиты твёрдые получают либо выращиванием монокристаллов (
где Т0 - идеальная т-ра стеклования полимера, Т - т-ра системы, В - константа.
В системе ПЭО-Н3РО4 образуется комплекс (ПЭО) Н3РО4 с n =1,33, обладающий протонной проводимостью ок. 10-3 См/м (298 К). В комплексе ПЭО-NH4НSО4 анионы практически неподвижны и протон переносится катионами