Кванты излучения и переходы.
Уровни энергии и спектральные переходы в атоме водорода
Содержание:
Спектральные характеристики света.
Уровни и спектральные переходы в атоме водорода.
Спектры уровней и матрицы переходов.
Квантовая механика изучает объекты с размерами от 10-7¸10-8 см до
10-16см.
Её разделы, посвящённые строению вещества:
Квантовая химия, изучает электронное строение атомно-молекулярных, в том числе и полимерных систем, таких, как кристаллы и макромолекулы, в том числе и биологических макромолекул. Её традиционные интересы обычно лежат в нерелятивистской области, хотя по необходимости и всё чаще она прибегает и к релятивистским уточнениям.
Ядерная (субатомная) физика изучает объекты с размерами от размера атомного ядра и менее, т.е. 10-13 до 10-16 см. До расстояний порядка 10-16 см удаётся экспериментально наблюдать признаки сложной структуры многих субатомных частиц, но на меньших расстояниях признаки сложной структуры частиц в настоящее время не установлены.
В последние годы возникал наноэлектроника. Она занимается объектами, размеры которых порядка 10-7 см (10-9 м). На рубеже 20-21 веков это область новейших фундаментально-научных и инженерно-технологических изысканий. К её пределам вплотную подошло направленное конструирование микроэлементов вычислительной техники (чипов).
Основные типы взаимодействий в природе
В исследованной области энергий, которая соответствует предельному пространственному разрешению порядка от 10-15 до 10-16 см проявляются четыре типа взаимодействий:
- сильное проявляется на расстояниях порядка размера ядра от 10-13см и менее. Причиной сильного взаимодействия являются ядерные силы, которые в ядре действуют между нейтроном и протоном и обеспечивает стабильность ядра. В нём участвует большинство известных в настоящее время частиц,
- электромагнитное, в котором участвуют все электрически заряженные (и некоторые нейтральные) частицы; на расстояниях порядка размера ядра оно слабее сильного взаимодействия. Именно с электромагнитными взаимодействиями связано и существование, и физические свойства атомно-молекулярных систем,
- слабое проявляется на расстояниях, не превышающих 10-16 см; оно является причиной распада некоторых видов субатомных частиц,
(в настоящее время установлено, что на расстояниях менее 10-16 см проявляется единое электрослабое взаимодействие),
- гравитационное, которое действует на всех расстояниях, но по сравнению с прочими на соответствующих им расстояниях оно исчезающе мало. Так его величина на 36 десятичных порядков меньше, чем у электростатического взаимодействия, скажем, двух протонов. Его роль важна в макромире, особенно в космических масштабах.
Частицы и волны в классической механике
Классической механикой принято называть раздел физики, изучающий законы движения макроскопических тел. В классической механике принято различать:
- движения локализованных масс. Их принято называть корпускулярными системами. Поступательное движение отдельной корпускулы с очень большой точностью можно описать на основе механики материальной точки, расположенной в центре масс.
- движения сплошных сред возникают при возмущении пространственно непрерывно распределённой среды. Такие движения имеют периодический волновой характер.
Таким образом, корпускула это пространственно локализованная масса (в пределе доходящая до материальной точки), а волна это движение непрерывной среды с признаками периодичности в пространстве и во времени.
Корпускулярно-волновая природа излучения
Волновые свойства света были экспериментально установлены ещё в 17-м столетии. О волновой природе света неопровержимо свидетельствуют чисто волновые явления дифракции - огибания небольших пространственных препятствий световой волной, а далее интерференции – возникновения пространственно чередующихся областей взаимного усиления (в фазе) и взаимного ослабления (в противофазе) налагающихся когерентных волн, исходящих из двух или нескольких точек пространства (кольца Ньютона, зоны Френеля и т. д.). Механические волны распространяются в сплошной среде, и для световой волны по аналогии также постулировали гипотетическую сплошную среду, которую назвали эфиром.
Во 2-й половине 19 века открыли электромагнитное поле, и стало ясно, что световая волна представляет его колебания, а эфир - не более, чем гипотетическая модель непрерывной среды. Ожидаемые свойства эфира не подтвердились. Оказалось, что оптический видимый диапазон длин волн охватывает лишь очень малую часть огромной шкалы электромагнитного спектра, он в длинноволновой области переходит в радиочастотный диапазон, а в коротковолновой – в рентгеновское, а далее в -излучение.
Волновая теория, вытекающая из электродинамики, до мельчайших особенностей объяснила все геометрические закономерности распространения излучения в пространстве, и в терминах механики это означает, что кинематика света подчиняется волновым законам.
На рубеже 19-20 веков были экспериментально открыты факты, которые не укладывались в волновую концепцию света. Все такие явления затрагивают взаимодействие излучения и вещества – законы поглощения и испускания (абсорбции и эмиссии) света. Рентгеновское излучение, имеет ту же природу, что и видимый свет. Это обычное электромагнитное поле, но отличается от оптического диапазона очень малыми длинами волн, наименьшими из известных в то время. При описании свойств коротковолнового излучения не удалось ограничиться лишь волновыми законами, и пришлось ввести корпускулярные представления о структуре электромагнитного поля.
Среди первичных явлений, необъяснимых без корпускулярной модели оказались фотоэффект, термодинамика равновесного излучения абсолютно чёрным телом, и рассеяние рентгеновского излучения веществом (эффект Комптона). Для количественного описания экспериментальных фактов потребовалось ввести представления об элементарных частицах электромагнитного излучения – фотонах, а переносимые ими порции энергии были названы квантами. Особенность фотонов состоит в том, что их масса покоя нулевая.
Возникла, как показалось на первый взгляд, противоречивая ситуация.
С одной стороны движущееся электромагнитное поле - непрерывная среда, а с другой структурно-дискретное образование – поток частиц-фотонов.
Этот раздел предназначен для вводных упражнений в студенческой аудитории. Его цель – простейшее обсуждение комбинационного принципа, связывающего энергетические уровни простейшего атома с частотами, волновыми числами, энергиями спектральных переходов.
Здесь приведены элементарные сведения о характеристиках электромагнитного излучения, таких как длина волны, волновое число, частота и энергия спектрального перехода, области электромагнитного излучения и диапазоны спектральных методов, используя формулу Планка-Эйнштейна ( =h).
Полезно отметить, что в течение первых десятилетий 20-го века поглощение и эмиссия и рассеяние излучения наблюдались в виде однофотонных процессов. Позднее с открытием нелинейной оптики и созданием мощных лазерных источников излучения были открыты многофотонные процессы.
3.1. Энергия поглощаемого или испускаемого фотона - кванта электромагнитного поля прямо пропорциональна частоте излучения , обратно пропорциональна длине волны , прямо пропорциональна волновому числу и определяется известной формулой Планка:
(3.1)Это соотношение позволяет для отсчёта энергии использовать и единицы измерения частоты (1 герц = с-1 или кратные ему величины 1 килогерц =103 герц, или1ме-гагерц =106 герц, или 1 гигагагерц =109 герц и т.д.), и единицы измерения волнового числа (чаще всего обратные сантиметры [] см-1). Эти разные шкалы отсчёта энергии используются в различных областях экспериментальной спектроскопии.
Так, например, в оптической спектроскопии, изучающей электронные переходы в атомах и молекулах, используются обратные сантиметры (см-1), в радиоспектроскопии, изучающей процессы переориентации векторов магнитных моментов электронов или ядер (спиновых векторов ядер или электронов), обычно применяет единицы частоты - мегагерцы или гигагерцы (мГц, гГц,). В спектроскопии высоких энергий, использующей рентгеновское или гамма-излучение, обычной единицей является электроновольт (эВ).
3.2. Уровни квантовых систем являются элементами одномерных массивов - энергетических спектров
и могут быть пронумерованы каким-либо дискретным числовым множеством, чаще всего , где квантор V означает «или» . (3.2)Числа-номера уровней называются квантовыми числами. Они образуют массивы. Дис-танции между уровнями
образуют уже двумерные упорядоченные массивы - матрицы: . (3.3)Каждой паре уровней соответствует два перехода. Энергии поглощаемого и испускаемого квантов (поглощаемого или испускаемого фотона) почти одинаковы, и эту пару переходов удобно изобразить символом
или можно просто парой индексов, которые в зависимости от направления перехода чередуются как nm (переход n ® m) или как mn (переход m ® n).3.3. Поглощение или испускание фотона системой по закону сохранения энергии связано с её переходами вдоль лесенки дискретных уровней энергии, и поэтому каждому из возможных переходов отвечает своя частота или своё волновое число. Частоты, волновые числа и длины волн, порождаемые этими квантовыми переходами, характеризуют электромагнитный спектр системы. Они также образуют матрицы и могут быть пронумерованы индексами: