Смекни!
smekni.com

Кинетика низкотемпературной радиационной постполимеризации тетрафторэтилена в стеклующихся фторорганических растворителях (стр. 2 из 2)

С увеличением дозы предварительного облучения выход полимера в исследуемой системе монотонно возрастает и при дозах 7—10 Мрад достигает предельного значения (рис. 4). Для выяснения причины такой остановки реакции было проведено исследование влияния фотоотбеливания на процесс постполимеризации. Облучение видимым УФ-светом (Х^236 нм) стеклообразного раствора ТФЭ в ФМП при 77 К в течение 5 ч не приводит к полимеризации при размораживании, на калориметрической кривой не наблюдается тепловыделения, связанного с полимеризацией. Фотоотбеливание образца, предварительно подвергнутого f-радиолизу в тех же условиях, приводит к частичному подавлению постполимеризации, выход полимера уменьшается вдвое. Действие же УФ-света при 77 К на систему ФМП + ТФЭ, содержащую RCT, не приводит к образованию полимера при расстекловывании. Таким образом, совокупность полученных экспериментальных данных не дает основания предполагать, что ионные процессы играют определяющую роль в постполимеризации.

Была исследована также постполимеризация ТФЭ при расстекловывании других фторорганических растворителей. Соединение ГОГ при охлаждении полностью переходит в стеклообразное состояние (Тс —155 К). Растворение ТФЭ в этом соединении также приводит к смещению Тсв область более низких температур. Полимеризация предварительно облученных образцов протекает в области расстекловывания, как и для системы ФМП + ТФЭ, однако общий выход полимера выше (таблица). Спад скорости полимеризации для каждого из экспериментов, представленных в таблице, согласно уравнению (1), хорошо спрямляется в координатах lgwот t, что дает возможность определить величину к0(таблица). По уравнению (3) были определены значения cp[Rp]0, которые также представлены в таблице. Температурные зависимости величин каи [Rp] о для системы ГОГ + ТФЭ представлены на рис. 3.

Таким образом, для этой системы в температурном интервале 120— 150 К имеем с0=5,5ехр с-1 и кр[Rp-]=180 exp{-3500/RT} с-1 Следовательно, различия процессов постполимеризации ТФЭ при расстекловывании исследованных матриц связано с различием в константах обрыва. Уменьшение kClпри переходе от ФМП к ГОГ приводит, по-видимому, к увеличению средней длины образующихся полимерных цепей и, следовательно, к увеличению общего выхода полимера при одинаковой дозе предварительного облучения.

Расстекловывание перфтор-4-метилпентена-2 происходит при более низких температурах (Гс^112 К). Растворение ТФЭ в этой матрице приводит лишь к незначительному смещению Тсв область низких температур. Естественно, что полимеризация при столь низких температурах протекает с незначительными скоростями.

Таким образом, использование метода постполимеризации при расстекловывании матрицы позволило определить основные кинетические параметры низкотемпературной полимеризации ТФЭ. Для определения предэкспоненциальных множителей константы роста необходимы измерения числа растущих полимерных цепей. Подобные кинетические исследования с использованием матриц, стеклующихся при более высоких температурах, позволит в дальнейшем провести измерение кинетических параметров процесса для более широкого температурного диапазона.


ЛИТЕРАТУРА

1. Аллаяров С.Р., Кирюхин Д.П., Асамов М.К., Варкалов И.М. Химия высоких энергий, 1980, т. 14. № б, с. 509.

2. Варкалов И.М. Успехи химии, 1980, т. 49, № 2, с. 362.

3. Аллаяров С.Р., Кирюхин Д.П., Асамов М.К., Варкалов И. М. Высокомолек. соед. А, 1982, т. 24. № 3, с. 466.

4. Варкалов И.М., Кирюхин Д.П. Высокомолек. соед. А, 1980, т. 22, № 4, с. 723.

5. Аллаяров С.Р., Варкалов И. М., Голъданский В.И., Кирюхин Д.П. Изв. АН СССР. Сер. хим., 1983, № 6, с. 1225.