Гели широко распространены в нашей повседневной жизни. Любому известны пищевые гели (зефир, мармелад, холодец), косметические (гель для душа, кремы), медицин ские (мази, пасты). Однако немногие знают, что хрящи, сухожилия, волосы представляют собой органические гели, а опал, жемчуг, сердолик, хальцедон - минеральные.
Для некоторых гелей характерно явление синерезиса (или расслоения) - самопроизвольного выделения жидкости. При этом пространственная сетка геля уплотняется, ее объем уменьшается, образуется так называемый твердый коллош). Схематично описанные процессы представлены на рисунке.
Чаще всего с явлением синерезиса приходится бороться, поскольку именно оно определяет сроки годности пищевых, косметических, медицинских гелей. Например, при дли тельном хранении мармелад или торт «Птичье молоко» выделят жидкость, становятся непригодными к употреблению. Однако в некоторых случаях синерезис - великое благо.
Благодаря биологическому синерезису мы наблюдаем такое явлении, как свертывание крови, суть которого состоит в превращении растворимого белка фибриногена в нерастворимый - фибрин.
Процессы, изображенные на рисунке, являются обратимыми. Из твердого коллоида желатина (продукта белкового происхождения) при набухании в теплой воде образуется студнеобразный гель - желе. Но в кулинарных рецептах всегда предупреждают: нельзя доводить желе до кипения, иначе гель превратится в золь, и дисперсная система вновь приобретет текучесть.
Частицы дисперсной фазы коллоидных растворов нередко не оседают даже при длительном хранении. Почему так происходит? Первая причина заключается в том, что мельчайшие коллоидные частицы за счет теплового движения постоянно сталкиваются с молекулами дисперсионной среды, изменяя направление движения, т. е. оседания не наблюдается. Но почему при столкновении частиц дисперсной фазы не происходит их коагуляция, укрупнение, что неизбежно привело бы к расслоению коллоида? Слипанию препятствует электрический заряд на поверхности коллоидных частиц, все они оказываются одноименно заряженными, что приводит к их взаимному отталкиванию. Остается выяснить, как же образуется этот заряд? Для этого рассмотрим строение коллоидной частицы.
2.2.3 Мицеллы
Частицы дисперсной фазы золей называют мицеллами. Если исключить влияние растворителя, в котором образуется коллоидная система, то упрощенную схему строения мицеллы золя хлорида серебра (при избытке хлорид-анионов) можно представить следующим образом. Предположим, что золь хлорида серебра получен сливанием сильно разбавленных растворов хлорида калия и нитрата серебра, причем хлорид калия взят в избытке.
При взаимодействии катионов серебра с хлорид-анионами образуются частицы нерастворимого в воде хлорида серебра. Поскольку растворы сильно разбавлены, микрокристаллы получаются коллоидных размеров, очень мелкие. Такой микрокристалл образует ядро мицеллы.
Рост кристалла прекращается, когда в растворе практически до нуля падает концентрация ионов серебра. Но хлорид-анионы присутствуют в избытке. Часть из них адсорбируется на поверхности ядра, достраивая его кристаллическую решетку. Хлорид-анионы в данном случае называют потенциалопределяющими ионами. Именно они обусловливают наличие отрицательного заряда агрегата ядра с избытком ионов С1-. Если бы в растворе присутствовал избыток нитрата серебра, потенциалопределяющими ионами были бы катионы Ag+.
Естественно, после возникновения заряда образовавшаяся частица начинает притягивать из раствора ионы с противоположным знаком - катионы калия (противоионы), образуется так называемый двойной электрический слой. Некоторая часть противоионов очень прочно притягивается к агрегату, образуя адсорбционный слой. Часть мицеллы, включающую ядро, потенциал определяющие ионы и адсорбционный слой, называют гранулой. Ионы К+, которые не входят в адсорбционный слой, слабее связаны с гранулой и могут диссоциировать в раствор. Они составляют диффузный слой противоионов.
В целом мицелла представляет собой электронейтральную частицу, но за счет перехода части ионов диффузного слоя в раствор гранулы имеют на поверхности избыточный отрицательный заряд, который и препятствует их коагуляции в более крупные частицы.
Строение мицеллы можно изобразить с помощью формулы. Последовательные шаги в составлении формулы мицеллы таковы.
1)Ядро мицеллы состоит из т частиц AgCl, образующих микрокристалл: m[AgCl].
2)Потенциалопределяющие ионы адсорбируются на поверхности ядра; предположим, что для нашего примера их число равно п: m[AgCl] • nСl-.
3)Затем следует слой противоионов. Их общее число так же равно п, однако часть (допустим, х) из них образуют диффузный слой, остальные (п - х) вместе с ядром и потенциалопределяющими ионами составляют гранулу. Часть формулы, относящуюся к грануле мицеллы, заключают в фигурные скобки. Заряд гранулы в данной мицелле равен х~. Таким образом, формула мицеллы золя хлорида серебра в избытке хлорид-анионов такова:
{m[AgCl] • TiCl" • (п - х)К+}х- хК+
Зная строение мицеллы, можно управлять процессом коагуляции. Каким образом можно «заставить» коллоидные частицы коагулировать? Очевидно, необходимо лишить их поверхностного заряда. Этого можно добиться с помощью растворов электролитов. Действительно, если к золю хлорида серебра добавить, например, раствор сульфата алюминия, катионы А13+ нейтрализуют отрицательный заряд гранулы, мицеллы укрупняются и оседают под действием силы тяжести. Очевидно, что при равных концентрациях трехзарядный ион алюминия обладает большей коагулирующей способностью, чем, например, однозарядный ион лития Li+.
В некоторых случаях, напротив, необходимо поддерживать устойчивость коллоидной системы или преобразовать коагулят в золь. Вспомните, например, принцип действия поверхностно-активного вещества, например мыла, при удавлении жира с загрязненной поверхности. Гидрофобный углердородный радикал растворяется в частицах жира, а гидрофильный карбоксилат-анион оказывается на поверхности. Мельчайшие (коллоидные) капельки жира с «одуванчиком» анионов -СОО- на поверхности переходят в раствор и не слипаются вновь из-за наличия отрицательного заряда.
Список используемой литературы
1. Калоус В. Биофизическая химия. /Калоус В., Павличек З. – М., 1985 г.
2. Общая химия. Биофизическая химия. Химия биогенных элементов: Учеб. для вузов/Ю.А. Ершов, В.А. Попков, А.С. Берлянд и др.; Под. Ред. Ю.А. Ершова. – 2-е изд., испр. и доп.- М.: Высш. шк., 2000м – 560 с.: ил.
3. Маршелл Э. Биофизическая химия. – М.: Мир, 1981.