Смекни!
smekni.com

Рентгенофлуоресцентное определение редких элементов Sr, Rb, Nb в литий-фтористых редкометальных гранитах (стр. 5 из 5)

Управление прибором и обработка данных: аналитическая программа OXSAS.

Управление работой спектрометра и обработка данных осуществляется программой OXSAS. Программа OXSAS использует самую современную программную платформу, отвечающую запросам потребителя и позволяющую пожизненную модернизацию программного обеспечения спектрометра.

Схема прибора:

В спектрометрах серии ARL ADVANT'X используется двухсекционная первичная камера, увеличивающая пропускную способность прибора за счет того, что во время анализа одной пробы вторая проба ожидает своей очереди в камере. Для анализа жидких проб необходима гелиевая среда вместо вакуума. Благодаря уникальной конструкции затвора, гелием заполняется только небольшая (объемом около 3 л) первичная камера. Это позволяет очень быстро (1,5 минуты) менять среду анализа, сохраняя в вакууме и при постоянной температуре все измерительные устройства и защищая их от капель жидкости.

Также отличительной особенностей данного спектрометра является наличие сразу двух детекторов: сцинтилляционного счётчика и газового пропорционального счётчика. Такая конструкция позволяет определять как лёгкие так и тяжёлые элементы, что очень важно при анализе многокомпонентных смесей.


Образец полученного спектра на рентгенофлуоресцентном (XRF) спектрометре последовательного анализа ARL ADVANT'X

2.3 Результаты РФА анализа

В ходе проделанной работы были проанализированы 9 проб способом стандарта фона на содержание в них таких элементов как ниобий, стронций, рубидий. Были получены значения nнк, na, nф.

По полученным данным были рассчитаны концентрации следующих элементов: Sr, Nb, Rb:

Са=Саос* (nнкос/naос) * (na/nнк)

Саос - концентрация определяемого элемента в образце сравнения

nнкос - интенсивность некогерентного рассеянного излучения Rh в образце сравнения кИмп/с

naос - интенсивность чистой флюоресценции в стандартном образце кИмп/с

na - интенсивность чистой флюоресценции в пробе кИмп/с

nнк - интенсивность некогерентного рассеянного излучения Rh в пробе кИмп/с

Расчет предела обнаружения производился по формуле:

Cпр = 3/ηа × (2nф / tэксп) ½,

Где: ηа = nа / са - удельная интенсивность, (кИмп/с) / ppm

nф - интенсивность фона, кИмп/с

tэксп - время измерений (экспозиция, с)

Расчеты содержаний рубидия

Проба nл+ф (Кимп/с) nнк(Кимп/с) nф слева(Кимп/с) nф справа(Кимп/с) ФонИзм(Кимп/с) nA(Кимп/с) CRbppm
1 5,40 13,5 0,91 0,80 0,86 4,55 394
2 2,37 13,6 0,84 0,82 0,83 1,54 133
3 0,95 8,85 0,61 0,60 0,61 0,35 46
4 1,36 14,7 0,91 0,84 0,88 0,49 38
5 5,71 12,8 0,86 0,77 0,81 4,90 448
6 2,60 13,9 0,82 0,80 0,81 1,80 152
7 1,65 10,8 0,76 0,66 0,71 0,95 103
8 2,45 13,3 0,81 0,79 0,80 1,66 146
9 7,93 15,9 0,69 0,66 0,67 0,56 41
10 6,33 11,4 0,77 0,69 0,73 1,02 104

Корреляция nф и nнк в разных матрицах для стронция

Корреляция nф и nнк в разных матрицах для ниобия

Проба nл+ф (Кимп/с) nнк(Кимп/с) n слева (Кимп/с) n справа (Кимп/с) ФонИзм(Кимп/с) nA(Кимп/с) CA ppm
1 2,97 13,5 1,00 0,94 0,97 2,00 156
2 4,53 13,6 0,93 0,96 0,94 3,58 278
3 4, 20 8,85 0,75 0,67 0,71 3,48 415
4 3,34 14,7 1,06 0,99 1,02 2,32 166
5 1,70 12,8 0,96 0,90 0,93 0,77 63
6 3,13 13,9 1,00 0,91 0,96 2,18 165
7 6,40 10,8 0,86 0,80 0,83 5,57 544
8 3,61 13,3 1,00 0,90 0,95 2,66 211
9 7,93 15,9 0,81 0,65 0,78 7,15 475
10 6,33 11,4 0,90 0,69 0,89 5,45 502

Проба nл+ф (имп/с) nнк(имп/с) nф слева(имп/с) n справа(имп/с) ФонИзм (имп/с) nA (имп/с) CA ppm
1 1,81 13,5 1,52 1,43 1,48 0,33 24,9
2 1,72 13,6 1,56 1,45 1,51 0,21 15,8
3 1,16 8,85 1,05 1,05 1,05 0,09 *
4 1,60 14,7 1,61 1,59 1,60 0 *
5 1,99 12,9 1,55 1,36 1,46 0,53 42,4
6 1,66 13,9 1,65 1,67 1,66 0 *
7 1,35 10,8 1,34 1,34 1,34 0,01 *
8 1,7 13,3 1,55 1,55 1,55 0,15 11,5
9 1,21 15,9 1,11 1,10 1,10 0,16 *
10 1,38 11,4 1,37 1,37 1,37 0,01 *

*-значения ниже предела обнаружения


Корреляция nф и nнк в разных матрицах

Предел обнаружения, рассчитанный для пробы №5 по рубидию составил 1 ppm (исходя из предположения, что время экспозиции = 100 сек)

В действительности t=100 сек. не было реализовано, а реальное время экспозиции было равно ≈2 сек. соответственно ∆Сэкс =10 ppm.

Из полученных данных можно сделать вывод о том, что при увеличении времени экспозиции, чувствительность анализа существенно повышается.

Заключение

Поскольку проделанная работа приобретает особое значение именно в совокупности с остальными данными (имеются в виду экспериментальные данные, полученные с помощью других методов анализа), то довольно сложно делать односторонние выводы.

Но важно отметить, что по окончании исследования станет возможным выявление закономерности поведения рудных элементов в процессе дифференциации магматического расплава которое позволит пересмотреть стратегию дальнейших поисковых работ на редкометальное оруденение и может служить основой для создания новых критериев поиска месторождений редких металлов.

Что же касается непосредственно выводов о проделанной именно мною работе, то можно сказать следующее: в случае когда требуется одновременное определения сразу трёх элементов с достаточно высокой чувствительностью и воспроизводимостью в образцах со сложной матрицей, то рентгенофлуорисцентный анализ по способу стандарта-фона является вполне приемлемым для данных целей и достаточно эффективным методом анализа. Несомненно, он конкурирует с такими видами анализа как: атомно-эмиссионный анализ, атомно-абсорбционный анализ, инверсионная вольтамперометрия, масс-спектроскопия активационный анализ, но в силу их дороговизны, невысокой экспрессности и других особенностей, он может занять далеко не последнее место при определении таких элементов как ниобий, стронций и рубидий в литий-фтористых редкометальных гранитах.

Литература

1. Бахтиаров А.В. "Рентгеноспектральный флуоресцентный анализ".Л. "Недра", 1985.144 с.

2. Ф.П. Горбенко " Аналитическая химия стронция" издат. "Наука" 1978.224 с.

3. И.М. Гибало " Аналитическая химия ниобия и тантала" М. 1967.352 с.

4. В.Е. Плющев, Б.Д. Степин." Аналитическая химия рубидия и цезия" издат. "Наука" 1975.224 с.

5. Н.Ф. Лосев " Количественный рентгеноспектральный флуоресцентный анализ" издат. "Наука" М. 1969.338с.