Смекни!
smekni.com

Синтез нитробензойной кислоты (стр. 2 из 5)

Теплота испарения составляет 122,1 ккал/кг 100%-ной С. к., теплота плавления 26,55 ккал/кг 100%-ной С. к.

Конц. С.к. — довольно сильный окислитель, осо­бенно при нагревании. Она окисляет HJ и частично HВr (но не HCI) до свободных галогенов, уголь до С02, серу до SO2, а также многие металлы (Сu, Hg и р.)- Золото и платина устойчивы но отношению к С. к. при любых концентрациях и температурах. С. к. с концентрацией выше 93% не действует на железо. Разб. С. к. легко растворяет железо с вы­делением Н2. Окислительные свойства для разб. С. к. нехарактерны. Действуя как окислитель, С. к. обычно восстанавливается до SO2. Однако наиболее сильными восстановителями она может быть вос­становлена до S и даже H2S. Копц. С. к. частично восстанавливается газообразным Н2, из-за чего и не может применяться для его сушки.

С. к. дает два ряда солей: средние — сульфаты, и кислые — бисульфаты, причем последние в твердом состоянии выделены лишь для немногих наиболее активных одновалентных металлов — Na, К и др

Получение. В современной заводской практике исходным веществом для получения С. к. служит сернистый газ. Процесс его переработки в С. к. может быть выражен суммарным стехиометрическим уравнением:

SO2 + 0,5О2 + пН2О = Н2SO4 + (п-1) Н2О

В промышленности этот процесс осуществляется посредством двух различных способов — контактного и нитрозного.

Сущность контактного метода состоит в том, что газообразный SО2, проходя «месте с кисло­родом или воздухом через катализатор, окисляется до SO3 по реакции:

SO2+0,5О2 = SO3 + 22,97 ккал/моль

Полученный SO3 растворяется в воде с образованием С. к.

Сущность нитрозного метода состоит в том, что об­жиговый газ (после соответствующей очистки его от пыли) обрабатывается С. к., в которой растворены окислы азота. Сернистый ангидрид поглощается нитрозой, а затем окисляется окислами азота по реакции:

SO2 + N2O3 +H2O = Н2SO4 + 2NO

Образующаяся окись азота выделяется из нитрозы, в которой она плохо растворима, а затем частично окисляется кислородом в газовой фазе до двуокиси азота: полученная смесь NO и NO2 вновь поглощается серной кислотой и т. д. Окислы азота не расходуются, а возвращаются в производственный цикл. Но по­скольку окислы азота не полностью поглощаются серной кислотой и частично уносятся отходящими газами, создаются невозвратимые потери.

Выпускается несколько сортов С. к., которые отличаются содержанием Н2SO4 и SO3 , а также составом и количеством примесей. Камерная кислота содержит (65% H2SO4, башенная — 75%, купоросное масло башенных систем — 90,5%, контактных — 92,5%. Олеум для нитрозы содержит 20,0% SO3, олеум для прочих це­лей — 18,5% SO3 .С. к. аккумуляторная (сорт А и Б) содержит 92—94% H2SO4, но своему качеству приближается к реактивной кислоте, содержащей 91,5 —95,6% H2SO4.

Конц. С. к.— башенную, купоросное масло и олеум — хранят в стальных нефутерованных баках. Для хранения к-ты более низкой концентрации стальные баки футеруют кислотоупорной керамикой. Олеум, купоросное масло, башенную к-ту и меланж перевозят в обычных стальных железнодорожных цистернах. Камерную и более слабую к-ту перевозят в стальных цистернах, покрытых внутри свинцом пли специальными кислотоупорными материалами (полиизобутиленом, винипластом и др.). Цистерны для перевозки олеума покрывают снаружи термоизо­ляцией во избежание замерзания олеума.

Техника безопасности Сернистый SO3 ангидрид вызывает раздражение кожи, слизи­стых оболочек носа, глаз и верхних дыхательных путей. Порог восприятия запаха 0,006—0,003 мг/л. При аварийном выделении газа пользуются фильт­рующим противогазом. Допустимая концентрация SO2 0.01 мг/л. SO3 в свободном состоянии в воздухе не содержится: соединяясь с нарами воды, он образует туман, состоящий из мелких капель С. к. и затрудняющий дыхание. Допустимая концентрация в воздухе рабочей зоны — 0,001 мг/л. Окислы азота вызывают кашель, ощущение удушья и сухости в горле, рвоту и головную боль. Допустимая концентрация окислов азота в воздухе рабочей зоны 0,005 мг/л (в пересчете на N2O5). Допу­стимая концентрация в воздухе рабочей зоны про­изводственных помещений селенистого ангидрида 0,001 мг/л. В случае отравления газами пострадав­шему необходим свежий воздух, кислород, при сильных отравлениях — искусственное дыхание, ме­дицинская помощь. Под действием С. к., меланжа и олеума кожа становится сначала белой, затем буроватой с покраснением. При этом окружающие ткани распухают. При попадании С. к. на кожу ее необходимо как можно скорее смыть сильной струей воды, обожженное место смочить 5%-ным раствором соды.

Применение. С. к. применяется в производстве минераль­ных удобрений, для получения разнообразных ми­неральных кислот и солей, всевозможных органических продуктов (в реакциях дегидра­тации (получение этилового эфира, сложных эфиров), гидратации (этиловый спирт из этилена), сульфи­рования (получение промежуточных продуктов в произ-ве красителей), алкилирования (получение изооктана, полиэтиленгликоля, капролактама н т.п.)), дымообразующих и взрыв­чатых веществ, в нефтяной, металлообрабатывающей, текстильной, кожевенной и др. отраслях промышленности. Самым крупным потребителем С. к. является производствово минеральных удобрений — суперфосфата и сульфата аммония.

НИТРАТ КАЛИЯKNO3 Бесцветные прозрачные призматические кристаллы ромбической системы. Плотность 2,109 г/см3. Реактив устойчив на воздухе. Хорошо растворим в воде (24,1 % при 20 0С) и разбавленном этиловом спирте, почти нерастворим в абсолютном спирте. При 334 0С плавится в подвижную жидкость, которая при дальнейшем нагревании разлагается на О2 и KNO2.

Чистый препарат легко получить перекристаллизацией технической калиевой селитры.

Целью данной курсовой работы было получение относительно чистой

м-Нитробензойной кислоты с минимально возможными примесями и с достаточно высоким выходом.

2.Литературный обзор

Нитрование – реакция замещения атома водорода нитрогруппой. Иногда нитрогруппа может замещать атомы галоида, сульфогруппу, карбоксильную группу и другие. Реже нитрогруппу вводят в молекулу путем присоединения соответствующего реагента по месту кратной связи в ненасыщенном соединении.

В качестве нитрующих агентов чаще всего применяются следующие соединения или их смеси:

1. азотная кислота различной концентрации;

2. смесь концентрированной азотной и концентрированной серной кислот в отношении 1:1 (нитрующая смесь);

3. нитраты щелочных металлов в присутствии серной кислоты;

4. нитраты металлов в присутствии уксусного ангидрида и уксусной кислоты;

5. азотная кислота или смесь азотной и серной кислот с уксусным ангидридом или ледяной уксусной кислотой;

6. органические нитраты;

7. азотистая кислота и четырехокись азота.

Способность органических соединений к нитрованию, то есть к замене водорода на группу NO2, неодинакова. Насыщенные соединения нитруются с трудом. Легко замещается водород, стоящий у третичного атома углерода, но известны также случаи нитрования метиленовых групп. Ненасыщенные соединения легко вступают в реакцию присоединения с сильными кислотами, в том числе и азотной, образуя в последнем случае нитропроизводные. Реакция нитрования ароматических соединений проходит, в общем, легко и является одной из важнейших реакций органической химии. Гетероциклические соединения также нитруются довольно легко, но труднее, чем ароматические соединения.

Влияние температуры на реакцию нитрования. При нитровании ароматических соединений одним из наиболее важных условий является соблюдение температурного режима. В отдельных случаях превышение заданной температуры приводит к энергичному окислению ( окисляющее действие азотной кислоты), что снижает выходы нитросоединений. В известной мере изменение температуры реакции оказывает также влияние на место вступления нитрогруппы, а также на степень нитрования; например, повышение температуры при нитровании бензола приводит к увеличению в продуктах реакции количества о-динитробензола.

Нитрование – реакция экзотермическая. Введение одной нитрогруппы сопровождается выделением около 36,5 ккал/ моль. Тепло выделяется также вследствие разбавления серной кислоты (обычно входящей в состав нитрующей смеси) водой, образующейся в процессе реакции нитрования

RH + HONO2 → RNO2 + H2O.

Реакцию нитрования следует вести медленно, добавляя небольшими порциями нитруемое вещество к нитрующей смеси и одновременно охлаждая реакционную смесь.

Влияние перемешивания. В тех случаях, когда нитруемое вещество не растворяется в нитрующей смеси, реакционную смесь нужно тщательно перемешивать или встряхивать, так как практически процесс нитрования происходит только на границе двух фаз.

Место введения нитрогруппы в бензольное ядро. Вступление нитрогуппы в ароматическое ядро в общем согласуется с правилом замещения. Однако в определенных условиях во время нитрования ароматических соединений нитрогруппа вступает в положение, наиболее близкое к уже имеющемуся заместителю, даже в тех случаях, когда последний направляет замещение в мета- или пара- положение. Например, при нитровании нитробензола, кроме м- динитробензола, образуется около 10% о- динитробензола.