Na2S2O3 + H2SO4 → Na2SO4 + S↓ + SO2↑ + H2O
Сера, выделяющаяся в тонкораздробленном состоянии, даёт помутнение раствора. Момент исчезновения из поля зрения линеек или шрифта на бумаге, подложенной под стакан с реагирующим веществом, соответствует выделению определённого количества серы. Так как степень помутнения зависит от толщины слоя, то все опыты следует проводить в одном и том же стакане, чтобы объём жидкости и соответственно высота слоя были одинаковы.
Время, необходимое для выделения данного количества серы обратно пропорционально средней скорости процесса. Началом реакции считаем момент смешения растворов, условным концом реакции – выделение одного и того же количества серы.
Опыт 1. Зависимость скорости реакции от температуры
В ходе опыта смешали 20 мл раствора 0,5%-ного раствора серной кислоты и 20 мл 0,5%-ного раствора серноватистокислого натрия, предварительно измерив температуру растворов. Стаканчик со смесью был поставлен на лист линованной бумаги. В результате реакции: Na2S2O3 + H2SO4 → Na2SO4 + S↓ + SO2↑ + H2O наблюдалось помутнение смеси. Был отмечен отрезок времени до условного окончания процесса.
Затем опыт был проделан ещё два раза, но температура растворов была поднята на 10˚C и 20˚C относительно первоначальной. Результаты измерений занесены в таблицу 1.
Табл. 1.
№ опыта | Температура растворов, ˚C | V(H2SO4), мл | V(Na2S2O3), мл | Время, с | Условная скорость реакции |
1 | 20 | 20 | 20 | 90 | 1,11 |
2 | 30 | 20 | 20 | 20 | 5 |
3 | 40 | 20 | 20 | 10 | 10 |
По данным таблицы можно рассчитать температурный коэффициент Вант-Гоффа для данных реакций:
;Вывод: Температурный коэффициент Вант-Гоффа для реакции разложения пероксида водорода равен 3,25.
Опыт 2. Зависимость скорости химической реакции от концентрации реагирующих веществ при постоянной температуре
В один стаканчик налили 10 мл 0,5%-ного раствора серной кислоты. В другой налили 10 мл раствора серноватистокислого натрия и 20 мл дистиллированной воды. К раствору кислоты одновременно прилили воду и раствор соли и отметили по часам продолжительность опыта. Далее опыт был повторен с изменением концентрации соли: 20 мл раствора на 10 мл воды, 30 мл раствора соли.
Результаты измерений занесены в таблицу 2.
Табл. 2.
№ опыта | H2SO4, мл | Na2S2O3, мл | H2O, мл | Время, с | Усл. скорость реакции v |
1 | 10 | 10 | 20 | 110 | 0,909 |
2 | 10 | 20 | 10 | 50 | 2 |
3 | 10 | 30 | - | 35 | 2,857 |
По данным измерений можно определить порядок реакции n по скоростям, соответствующим двум различным концентрациям (метод Вант-Гоффа).
В результате вычислений получилось:
n1 = 1,1375; n2 = 0,8797; nср = 1,008 ≈ 1.
Вывод: порядок реакции n по скоростям, соответствующим двум концентрациям близок к 1.
Опыт 3. Скорость химических реакций в гетерогенных системах
В две пробирки налили соляную кислоту. Затем в одну из них положили кусочек мрамора, а в другую – такой же кусочек, растёртый в порошок. В обеих пробирках проходила реакция:
CaCO3 + 2HCl → CaCl2 + H2O + CO2↑.
Наблюдалось выделение газа. В пробирке, в которую был насыпан порошок, реакция проходила быстрее. Это объясняется тем, что площадь поверхности, на которой происходило взаимодействие веществ, была больше, чем в пробирке с цельным кусочком мрамора.
Вывод: в гетерогенных системах скорость реакции зависит от площади поверхности реагирующих веществ.
Опыт 4. Гетерогенный катализ.
а) Разложение пероксида водорода H2O2 происходит и при комнатной температуре, но довольно медленно:
H2O2 → H2O + ½O2.
Процесс разложения можно ускорить введением катализатора MnO2.
В 2 мл 3%-ного раствора H2O2 всыпали щепотку оксида марганца (IV). Скорость реакции существенно возросла, наблюдалось бурное выделение пузырьков газа.
б) В пробирку налили серной кислоты, прилили раствор перманганата калия KMnO4. Полученную смесь разделили по трём пробиркам поровну. В каждую пробирку опустили по кусочку гранулированного цинка. В первую пробирку добавили несколько кристаллов KNO3, во вторую – в 2-3 раза большее количество нитрата калия, третью оставили для сравнения.
Наиболее быстро обесцвечивание раствора происходило во второй пробирке, в первой обесцвечивание проходило медленнее, в третьей – обесцвечивание было малозаметным. Аналогичным образом происходило и выделение пузырьков газа.
2KMnO4 + 3H2SO4 + 2Zn → ZnSO4 + K2SO4 + MnSO4 + 3H2↑
Вывод:MnO2 – катализатор в реакции разложения перекиси водорода. KNO3 – катализатор во взаимодействии цинка, серной кислоты и перманганата калия.
Опыт 5. Гомогенный катализ. В предыдущем опыте реакцию разложения пероксида водорода ускоряли гетерогенным катализатором – твёрдым оксидом марганца MnO2.
H2O2 → H2O + ½O2.
Эта реакция ускоряется также при помощи гомогенного катализатора – комплексного иона – тетра-аммиаката меди [Cu(NH3)4]2+. Этот катализатор является комплексным, поэтому необходимо исследовать влияние составляющих его компонентов – иона меди и аммиака. С этой целью в одну пробирку нужно налить 2 мл раствора CuSO4 и 0,5 мл H2O2, во вторую – 2 мл водного раствора аммиака и 0,5 мл H2O2. В обеих пробирках наблюдается образование мелких пузырьков кислорода в результате слабого каталитического действия составляющих комплексное соединение компонентов.
В третью пробирку необходимо прилить 2 мл раствора CuSO4 и добавить водного раствора аммиака до появления комплексного соединения темно-синего цвета:
CuSO4 + 4NH3∙H2O → 4H2O + [Cu(NH3)4]SO4.
К полученному раствору катализатора нужно прилить 2 мл 3%-ного H2O2. Именно в третьей пробирке будет наблюдаться наиболее интенсивное выделение газа. При этом можно заметить, что катализатор во время реакции не расходуется, а лишь ускоряет течение процесса.
Вывод: [Cu(NH3)4]SO4 также является катализатором при разложении пероксида водорода.
Опыт 6. Сдвиг химического равновесия в гомогенной системе.
Влияние концентрации исходных веществ и продуктов реакции на химическое равновесие в гомогенной системе можно исследовать на примере реакции:
FeCl3 + 3NH4CNS ↔ Fe(CNS)3 + 3NH4Cl.
Смешаем в пробирке несколько миллилитров хлорида железа (III) и цианида аммония.
В результате содержимое пробирки окрашивается в тёмно-красный цвет. Полученную смесь разделили на 4 пробирки.
В первую добавили 2-3 капли роданистого аммония. Во вторую прилили немного концентрированного раствора хлорида железа (III). В третью всыпали немного кристаллического хлорида аммония и энергично встряхнули. Изменения цвета отмечены в таблице 3.
Табл. 3.
Номер пробирки | Добавленное вещество | Изменение цвета раствора | Сдвиг равновесия |
1 | NH4CNS | темнеет | → |
2 | FeCl3 | не меняется | - |
3 | NH4Cl (тв.) | светлеет | ← |
В первой пробирке vпр > vобр, во второй - vпр = vобр, в третьей - vпр < vобр.
По реакции с добавлением NH4CNS роданид железа образуется, что приводит к увеличению его концентрации и потемнению раствора, по реакции с добавлением NH4Cl (тв.) роданид железа расходуется, что приводит к уменьшению его концентрации и осветлению раствора.
NH4CNS сдвигает равновесие в сторону прямой реакции, а NH4Cl (тв.) в сторону обратной.
Выражение для константы химического равновесия:
Вывод: добавление цианида аммония сдвигает химическое равновесие в сторону прямой реакции, твёрдого хлорида аммония – в сторону обратной реакции, хлорида железа (III) не влияет на химическое равновесие.
Опыт 7. Влияние температуры на химическое равновесие
В пробирку налили 2 мл раствора аммиака и добавили 2 капли фенолфталеина. Пробирку нагрели. В результате изменения температуры раствор посветлел. Из-за повышения температуры часть раствора аммиака испарилась, следовательно, его концентрация уменьшилась. Нагревание сдвинуло равновесие в сторону обратной реакции.
Вывод: Нагревание сдвинуло химическое равновесие в сторону обратной реакции.