Рис. 1. Наклонный инерционный грохот с мех. вибратором: 1-электродвигатель; 2-шкивы с дебалансом; 3-вал с подшипниками; 4 -короб; 5 - рабочая поверхность (напр., решето); 6-упругая опора; 7-опорная плита.
Достоинства виброгрохотов: при высокой частоте колебаний сит отверстия их почти не забиваются материалом; высокая производительность и точность, пригодность для грохотов разнообразных материалов (в т.ч. влажных и глинистых); компактность, легкость регулирования и смены сит; меньший расход энергии, чем для грохотов др. типов.
Возбудителями колебаний могут служить также электромагниты, через обмотки которых пропускают переменный ток. Однако из-за ограниченной площади рабочей поверхности электровиброгрохоты значительно менее распространены. Основные типы механических грохотов - наклонные с колебаниями короба по круговой или эллиптические траектории. Серийно выпускаются легкие, средние и тяжелые виброгрохоты для материалов с насыпной плотностью, меньшей или равной соотв. 1,2; 1,6; 2,5 т/м3.
Создана и все шире применяется более совершенная разновидность инерционных грохотов. В них возвратно-поступательные колебания короба (при которых Г. наиб. эффективно) генерируются двумя дебалансными валами, вращающимися в противоположные стороны. Для обеспечения нормальной работы грохота частоты вращения валов должны быть одинаковы и синхронизированы по фазе. Это достигается с помощью мех. устройства, включающего, напр., шестерни или зубчатые ремни. Однако из-за наличия мех. передачи неизбежны износ движущихся частей и шум при работе грохота. Указанные недостатки устранены в грохотах, действие которых основано на открытом в СССР т. наз. эффекте самосинхронизации вращения обоих кинематических, не связанных между собой дебалансных валов, закрепленных в бортовых стенках короба, который вибрирует под заданным углом к рабочей поверхности грохота. Применяют одно-, двух- и многоситовые грохоты. Пример - многоситовый грохот (рис. 2) со значительно большими углами наклона рабочей поверхности, чем в др. конструкциях; имеет высокую производительность, компактен, благодаря электроподогреву рабочей поверхности до 50 °С м. б. использован для Г. влажных материалов. Самосинхронизирующиеся грохоты получают все большее распространение, поскольку позволяют обеспечить лучшие условия труда, резкое снижение объема ремонтных работ и простоев оборудования.
Рис. 2. Многоситовый самосинхронизирующийся грохот: 1 -короб; 2-сита; 3-вибровозбудитель; 4-упругая опора.
Увеличение угла наклона рабочей поверхности (до 25-34° и более), а также частот колебаний грохотов (в ряде случаев центробежное ускорение в 7 раз превышает ускорение свободного падения), реализуемое в новых конструкциях грохотов, особенно актуально для мелкого и тонкого Г., поскольку приводит к повышению его эффективности.
В некоторых конструкциях наклонных инерционных грохотов, в отличие от традиционных, по длине рабочей поверхности создается неоднородное вибрационное поле. Это облегчает отделение мелочи в зоне загрузки и просев в зоне выгрузки грохота. При разделении влажных и склонных к налипанию материалов наряду с подогревом рабочей поверхности грохота сообщают волнообразное движение, что вызывает в ней циклические упругие деформации и способствует лучшей очистке от остатков материала. С целью снижения износа и забиваемости сит используют инерционные грохоты с эластичной деформируемой рабочей поверхностью из полимерных материалов, напр. с резиновым ситом, выполненным из продольных нитей (диаметром 3-6 мм при зазоре между ними до 8 мм), опирающихся на поперечные гребенчатые планки. Одновременно с развитием инерционных наклонных грохотов возрастает применение горизонтальных. Последние подвергаются мехколебаниям по эллиптической траектории и отличаются большой скоростью перемещения материала по рабочей поверхности и соотв. высокой производительностью.
Механические классификаторы. Механические классификаторы представляют собой прямоугольные лотки с наклонным дном, которым сообщается встряхивающее и возвратно-поступательное движение. Материал, подлежащий разделению по крупности зерен, смешивается с водой, подается на верхний край классификатора и перемещается под действием силы тяжести в углубление на нижнем крае лотка. Там более тяжелые и крупные частицы оседают на дно и забираются конвейером. Более легкие и мелкие частички выносятся потоком воды.
Центробежные конусные классификаторы. В центробежных конусных классификаторах для выделения рудных частиц используются центробежные силы в водной среде. Процесс разделения в таких классификаторах позволяет получить мелкозернистую песчано-шламовую фракцию, пригодную для дальнейшего концентрирования методом флотации.
Движение наз. свободным при объемном содержании твердой фазы менее 5%, стесненным - при более высоком (в данном случае скорость движения меньше). К. г. применяют для разделения частиц с преимуществ, размером менее 2-3 мм (реже до 13 мм). При свободном движении частиц происходит их наиб. полное разделение, которое производится под действием сил тяжести в гравитационных классификаторах. Скорость потока поддерживается такой, что частицы меньше определенного размера (верхний продукт, или слив), не успевая оседать, выносятся в виде взвеси из аппарата, а частицы большего размера (нижний продукт, или пески) осаждаются в нем. Различают классификаторы с самотечной (напр., многосeкционные, конусные) либо принудительной (напр., отстойники, спиральные, реечные, чашевые) выгрузкой целевых фракций. Многосекционные классификаторы (рис. 1) состоят из корпуса, расширяющегося по ходу потока, и ряда конических сборников, снабженных мешалками и ячейковыми выгружателями. Разделяемая суспензия постепенно теряет скорость, поэтому по направлению ее движения оседают сначала наиболее крупные частицы, а затем все более мелкие; самая мелкая фракция уносится потоком и отделяется от жидкости на фильтре. Различные по размеру фракции нижнего продукта выводятся из аппарата при медленном перемешивании с помощью выгружателей. В классификаторах этого типа материал можно разделить на число фракций, равное числу секций n+1, т.е. с учетом фракции, идущей в слив. В конусных классификаторах твердые частицы пульпы разделяются в корпусе-конусе на две части. В беспоплавковых аппаратах мелкая фракция поднимается восходящим потоком и отводится через спец. желоб по назначению; крупная фракция оседает на дно и под напором пульпы выходит через нижний штуцер и сифонную трубу.
Рис. 1. Многосекционный классификатор: 1 корпус; 2 сборник; 3 мешалки; 4 выгружатeль; 5 привод.
В поплавковых аппаратах посредством верхнего или нижнего клапана-поплавка в качестве целевого продукта выделяют соотв. крупную либо мелкую фракцию. Спиральные классификаторы (рис. 2) представляют собой наклонные (под углом 12-18°) корыта полукруглого сечения, внутри которых вращаются одна или две спирали. Последние частично погружены в жидкость и транспортируют пески в верхнюю часть корыта, где они выгружаются. Слив удаляется из нижнего конца аппарата. Специальный механизм предназначен для подъема и опускания спирали при остановке и пуске классификатора. С увеличением угла наклона корыта содержание жидкости в осадке уменьшается.
В реечных классификаторах (рис. 3) ниж. продукт перемещается вверх по наклонному корыту и сбрасывается через его открытый торец с помощью движущейся возвратно-поступательной рамы, снабженной гребками. При течении суспензии по корыту и качаниях гребков верх. продукт выносится потоком жидкости через сливной лоток.
Рис. 3. Реечный классификатор: 1 - корыто; 2, 3 - соотв. рама с гребками и механизм ее возвратно-поступательные движения.
Эти аппараты менее производительны, чем спиральные, и поэтому применяются обычно в малотоннажных производствах. Чашевые классификаторы (рис. 4), обеспечивающие высокий выход слива, состоят из двух фракционирующих устройств: верхнего - конусной чаши-отстойника с медленно вращающимися гребками, нижнего - реечного аппарата.
Рис. 4. Чашевый классификатор: 1 - чаша с гребками; 2 - корыто; 3, 4 - соотв. гребковая рама и механизм ее движения; 5 - кольцевой желоб (карман).
Разделяемый материал поступает в чашу, где крупные частицы оседают на дно, сгребаются гребками к центру, через отверстие в дне попадают в корыто реечного классификатора и далее выводятся из его верх, части. Мелкая фракция, увлеченная песками, отмывается движущейся противотоком водой, направляется в чашу, откуда вместе с накапливающимися в ней мелкими частицами уходит через край корыта и кольцевой желоб (карман) в слив.
МЕХАНИЧЕСКИЕ МЕТОДЫ ОБОГАЩЕНИЯ