Смекни!
smekni.com

Теория МО ЛКАО (стр. 1 из 2)

.

Молекулярные интегралы и формула энергетические уровни:

Эти формулы удобны для графического исследования уровней МО с помощью компьютера.

Наконец, для проверки физической корректности расчётов и положенных в их основу схем про­анализируем предельные значения интегралов и уровней энергии МО:

Пределы интегралов (Квази-ион He+) Пределы электронной энергии


Можно видеть, что с физической точки зрения расчёт совершенно верно предсказывает пределы изменения электронной энергии системы в электростатическом поле ядер в гипотетическом процессе их сближения от бесконечного удаления до гипотетического слияния. Так подтверждается корректность теории, и это особенно важно, поскольку при её по­строении было использовано значительное количество непростых приближений.

В простейшей модели без оптимизации базисной АО получаем :

Показатель экспоненты в АО фиксирован и равен

Все выводимые ниже выражения легко получаются из более общих выражений при

Интегралы существенно упрощаются и получаются следующие выражения:

1) Уровень исходной базисной АО

2) Интеграл перекрывания:

.

Интегрируя по частям, получаем

,

3) Кулоновский интеграл:

,

4) Резонансный интеграл:

Отсюда получаются энергетические уровни МО в виде:

.

Этот простой подход был исторически первым на пути построения квантово-механической теории валентности. Несмотря на свою ограниченность, он позволил на качественном уровне по­нять и происхождение электронного облака в межъядерной области, и природу устойчивости простейшей молекулярной системы. В количественном отношении этот примитивный подход очень слаб, и, вроде бы, не идёт ни в какое в сравнение с уточнёнными расчётами. НО...!!!

Самый трудный шаг на неизведанном и полном неясностей пути создания ранее не сущест­вовавшей теории всегда первый. Автор этого учебного текста наблюдал триумфальное развитие квантовой химии с середины 60-х годов по настоящее время (январь 1999 года) и застал пере­ход от её исходного состояния к уже современному этапу и видел ещё слегка недоверчивое, изумлённое отношение химиков-синтетиков - людей, вообще-то весьма прагматично и дерзко мыслящих о веществе, к необычному ещё в то время варианту теории валентности, которая властно и как бы играючи вытесняла вариант привычной с 19 века качественной теории Бутлерова, оперирующей валент­ными штрихами с её причудливым нагромождением дополнительных конструкций. Оказалось, что не только качественно, но и количественно можно легко и точно объяснять и предсказывать спектрально наблюдаемые свойства молекул. Автор со студенческих лет хорошо помнит многочисленные дискуссии о сравнительных достоинствах и недостатках методов МО ЛКАО и ВС ЛКАО. Где-то сейчас ме­тод ВС...?!!

Бесспорным фаворитом теории валентности стал метод МО ЛКАО, идеально приспособлен­ный к алгоритмам современной вычислительной математики и компьютерной техники.

Сейчас уже совершенно ясно, что теория ЛКАО МО была настоящей идейной револю­цией. В её основу положено одноэлектронное приближение. Молекулярный ион водорода был первой и простейшей системой, на примере которой было понято и теоретически изучено физи­ческое происхождение феномена валентности.

Необходимые молекулярные интегралы принимают вид

.

Выражая локальные переменные (r1, r2) через единые декартовы координаты , запишем выражение МО в виде:

.

Оптимизированные параметры

отвечают абсолютному минимуму целевой функции - полной энергии связывающей МО, определяемой в зависимости от двух переменных: межъядерного расстояния и эффективного заряда ядра - показателя экспоненты в формуле базисной АО. Энергетические уровни передаются формулой, на первый взгляд того же вида, что и в расчётах с одним варьируемым параметромR:

.

Однако весьма существенное качественное отличие этой формулы состоит в том, что расчёт с двумя варьируемыми параметрами R , z состоит в том, что

в общем случае является довольно сложной функцией обеих переменных, и лишь его предел переходит в величину E1s(H):

,

Оптимизация энергетического уровня за счёт дополнительного варьирования показателя экспоненты приводит к намного лучшему согласию с экспериментом.



График функции

представляет собой поверхность. Рассматривая переход системы в минимум энергии вдоль одного лишь межъядерного расстояния, не следует забывать о сопутствующем изменении и второй переменной - показателя экспоненты базисной АО. Мысленное сближение частиц протекает в условном энергетическом минимуме адиабатического потенциала и завершается достижением точки абсолютного минимума. Условный минимум на поверхности энергии представляет собою пространственную кривую, а его проекция на координатной плоскости это плоская кривая, которую называют координатой реакции исследуемого процесса. В этом процессе образование молекулярной системы формально является лишь промежуточной стадией.

Применяя графические процессоры для современных персональных компьютеров (MATHCADPLUS/PENTIUM 2,3,4), можно проиллюстрировать все вычисления. Наглядные пространственные графики на рис. изображают адиабатические потенциалы основного и первого разрыхляющего одноэлектронных уровней E± (z,R).

R


Рис.4а. Фрагмент адиабатического потенциала E(R,z ) молекулярного иона H2+в области минимума.

Рис.3. Оптимизиро-ванная энергетичес-кая кривая низшего связывающего уров-ня МО и низшие уровни колебаний

у молекулярного

иона водорода H2+

Рис.2. Слагаемые и ре-зультирующая кривая энергии основного элект-ронного состояния моле-кулярного иона водородаH2+
Рис.4. Варьирование экспоненты базисной АО: сечения адиабати-ческого потенциала для разных z и определение минимума энергии в основном состоянии иона H2+.

Химическая связь есть результат баланса электростатических сил . Энергия связи представляет собой малую разность больших величин.

Для анализа свойств

двухцентровой химической связи удобно выделить результирующую энергетическую кривую

в наглядном масштабе.

Приоптимизации эффективного заряда ядраzу базисных АОкоордината абсолютного минимума адиабатического потенциала равна экспериментальной длине связи.




Признаки связывающих и разрыхляющих свойств МО (признаки связи и разрыхления).