C3V= K1+K2+K3={
}+{ , }+{ , , } (8)1.4 Факторизация групп
Пусть дана группа G и два подмножества M и N множества G.
Определение 1. Произведением подмножеств М и N группы G называется множество MN, состоящее из всевозможных произведений mn, где m пробегает множество M, а n – множество N.
Теорема 1. Произведение АВ двух подгрупп А и В группы G будет подгруппой группы G, если А и В перестановочны, т. е. если АВ=ВА.
Рассмотрим примеры. В группе C3V перемножим подгруппы {
}3 и { }2. Используя таблицу Кэли для C3V, получаем, что C3V факторизуема: C3V={ }3 { }2. По таблице Кэли группы C3V находим { }2{ }2={ , , , }. Но это не подгруппа группы C3V. Следовательно, согласно теореме должно выполняться неравенство { }2{ }2¹{ }2{ }2. Действительно, перемножая, получим{
}2{ }2={ , , , }.Определение 2. Группа G называется прямым произведением подгруппы А и В, если элементы подгрупп А и В перестановочны: ab=ba, "aÎA, "bÎB и каждый элемент gÎАВ однозначно представляется в виде произведения g=ab. Обозначается прямое произведение подгруппы как G=A´B.
Определение 3. Подгруппа Н группы G называется циклической, порожденной элементом h, если все ее элементы являются степенями элемента h. Если же сама группа G совпадает со своей циклической подгруппой, то она называется циклической группой.
Элементом симметрии называется вспомогательный геометрический образ, характеризующий циклическую группу преобразования симметрии.
Теорема 2. Каждая конечная абелева группа G является прямым произведением конечных циклических групп, порядки которых являются степенями простых чисел.
Определение 4. Множество элементов a, b, c… группы G называется системой образующих групп G, если каждый элемент группы может быть представлен в виде произведения степеней элементов указанного множества
akblcm…=g.
Например, для циклической группы {
}3 образующим элементом или генератором группы является элемент . У группы C3V два образующих элемента: и , в чем можно убедиться, рассматривая факторизацию C3V={ }3´{ }2.Определение 5. Соотношения вида
apbqcr…=e,
связывающие образующие элементы группы G, называются ее определяющими соотношениями.
Совокупность всех образующих элементов и определяющих соотношений, полностью описывающих группу, называется генетическим кодом группы.
Например, группа {
}3 задается одним образующим элементом и одним определяющим соотношением = . Группа C3V задается двумя образующими и и определяющими соотношениями между ними вида = , = , = (9)Последнее соотношение после умножения его на
можно записать в стандартном виде = . Именно способом задания группы объясняется обозначение группы C3V, так как операции симметрии и при определенных соотношениях между ними определяют группу C3V. Чтобы получить таблицу Кэли группы C3V, надо было пользоваться геометрической моделью молекулы NH3. Зная же систему (9) определяющих соотношений, можно, например, найти, чему равно , если известно произведение . В самом деле, так как = , то умножая справа на , имеем = . Факторизация группы также значительно облегчается при задании группы с помощью генетического кода. Например, в полупрямом произведении C3V={ }3´{ }2 соотношение = задает автоморфизм группы { }3, так как является ее образующим элементом. Поэтому, пользуясь тем, что автоморфизм переводит произведение элементов в произведение их образов, получаем уже автоматически