Определение 11. База e1, e2, …, en эвклидова (унитарного) пространства называется ортогональной, если (ei, ej)=0, i¹j, i, j=1, 2, …, n, и ортонормированной, если она ортогональна и длина всех векторов равны единице.
3. Изометрия эвклидовых и унитарных пространств
Определение 12. Взаимно однозначное отображение f модуля М на модуль М¢ над одним и тем же кольцом K называется изоморфизмом, если выполняются следующие условия:
1. f(x, y)=f(x)+f(y)=x¢+y¢; x¢=f(x); y¢=f(y);
"x, yÎM;
2. f(ax)=af(x)=ax¢; "xÎK; "xÎM; x¢=f(x)ÎM¢.
Определение 13. Два векторных пространства W и W¢ над полем Р называются изоморфными, если они изморфны как модули над кольцом, которым является поле Р.
Пусть теперь даны два векторных пространства W и W¢ со скалярными произведениями A(x, y) и A¢(x¢, y¢) над полем Р.
Определение 14. Изометрией векторных пространств W и W¢ называется любой их изморфизм, который сохраняет значения всех скалярных произведений, т. е.
A(x, y)= A¢(f(x), f(y))= A¢(x¢, y¢); "x, yÎW;
f(x)=x¢; f(y)=y¢.
В эвклидовом пространстве из определения длины вектора и угла между двумя векторами следует, что при изометрии сохраняются длины векторов и углы между ними, т. е. сохраняются метрические соотношения, чем и объясняется название «изометрия». В унитарном пространстве при изометрии сохраняются длины векторов, ортогональные векторы переходят в ортогональные векторы.
2.3 Матрицы
1. Линейные отображения, операторы и матрицы
Определение 1. Отображение f: V®W векторного пространства Vв векторное пространство W над полем Р называется линейное отображение, если для всех v, v1, v2ÎV, aÎP выполняются условия:
1) f(v1+v2)=f(v1)+f(v2);
2) f(av)=af(v).
Если V=W, то линейное отображение называется линейным оператором или линейным преобразованием пространства V.
Пусть e1, e2, …, en – базис пространства V, а e1¢, e2¢, …, en¢ - базис пространства W. Образы базисных векторов пространства V в базисе пространства W можно записать в виде
(i=1, 2, …, m) (1)Коэффициенты в выражении (1) запишем в виде матрицы, которая называется матрицей линейного отображения f.
.В случае линейных операторов, т. е. линейных отображений векторного пространства в себя, операторы удобно обозначать
, а матрицу оператора в фиксированном базисе – в виде А.2. Унитарные, ортогональные, эрмитовы операторы и матрицы
Определение 2. Линейные операторы эвклидова (унитарного) пространства, которые сохраняют скалярное произведение векторов этого пространства, называется ортогональными (унитарными) операторами.
Пусть e1, e2, …, en – ортонормированная база унитарного (эвклидова) пространства. Если
- унитарный (ортогональный) оператор, то согласно его определению(ei, ej)= (
ei, ei)=1, i=1, 2, …, n;(ei, ej)= (
ei, ej)=0, i¹y. (2)Это означает, что система векторов
e1, e2, …, en сама составляет ортонормированную базу в соответствующем пространстве.Пусть А – матрица унитарного (ортогонального) оператора. Тогда можно записать
. Из выражения (2) следует, что в матрице А скалярные произведения векторов-столбцов на себя равны единице, а скалярное произведение различных векторов-стобцов равно нулю. Такая матрица называется унитарной (ортогональной). Унитарность (ортогональность) матрицы А означает, что сумма произведений элементов, стоящих в любом столбце этой матрицы, на сопряженные (на те же самые) к ним элементы равны единице, а сумма произведений элементов любого столбца на сопряженные к ним (на соответственные к ним) элементы другого столбца равна нулю.Определение 3. Матрица А* называется эрмитово сопряженной (или просто сопряженной) по отношению к матрице А, если А*=
, т. е. для того, чтобы из матрицы А получить эрмитово сопряженную матрицу, ее надо транспонировать и заменить элементы транспонированной матрицы комплексно-сопряженными элементами.Определение 4. Матрица А называется самосопряженной или эрмитовой матрицей, если A=A*; в том же случае, если элементы матрицы вещественны, A*=At=A и матрица А называется симметрической матрицей.
Определение 5. Матрица А называется унитарной (ортогональной) матрицей, если A*=A-1 (если At=A-1). Операторы, соответствующие эрмитовым матрицам, будем называть эрмитовыми.
2.4 Представления групп
1. Определение представлений
Определение 1. Представлением группы, действующим в n-мерном векторном пространстве V, называется гомоморфизм этой группы в группу невырожденных линейных операторов пространства V.
Невырожденным называется такой оператор
, который имеет обратный оператор , дающий по определению в произведении с единичный оператор : = = .Определение 2. Матричным представлением группы G называется гомоморфизм этой группы в группу невырожденных комплексных или действительных матриц размера n´n.
Определение 3. Подстановочным представлением группы G называется гомоморфизм этой группы в группу подстановок порядка n. Если гомоморфизм группы G в группу операторов, матриц или подстановок является изморфизмом, то он называется точным представлением.
Представление группы будем обозначать буквой Т. Пусть g1 и g2 – любые элементы группы G, а Т(g1) и Т(g2) – соответствующие этим элементам матрицы представления. Тогда согласно определению гомоморфизма группы
Т(g1, g2)= Т(g1) Т(g2). (4)
Определение 4. Два матричных представления Т1 и Т2 группы G в некоторую группу матриц называется эквивалентным, если существует невырожденная матрица F такая, что для всех матриц Т1(g), Т2(g) представления будет иметь место равенство
Т2(g)=Ф-1 Т1(g)Ф, "gÎG(5)
Эквивалентные представления не различаются.
2. Приводимые и неприводимые представления
Воспользуемся языком линейных операторов. Пусть дано некоторое представление Т группы G, действующее в векторном пространстве V. Каждому вектору vÎV оператор
(g)º сопоставляет вектор (v)=v1 этого же пространства. Пусть W – подпространство пространства V.Определение 5. Подпространство W пространства V называется инвариантным подпространством действия
, если, каковы бы ни были элементы gÎG и векторы wÎW, T(w)=w1, где w1ÎW.Определение 6. Представление T группы G, действующее в векторном пространстве V над полем Р, называется приводимым представлением, если в этом пространстве существуют неприводимые инвариантные относительно этого действия подпространства. Представление Т называется неприводимым, если единственные его инвариантные подпространства – О и само пространство V.
Интерпретируем это определение на языке матриц. Пусть представление Т группы G приводимо. Значит, в пространстве V представления может быть найдено нетривиальное инвариантное подпространство W. Пусть e1, e2, …, ek – базис пространства W. Дополним его до базиса е1, е2, …, еk, ek+1, …, en всего пространства V. Так как W инвариантно, то
(еi), где i=1, 2, …, k лежат в W. Поэтому (еi)=a1ie1+a2ie2+…+akiek, i=1, 2, …, k.Но так как эти векторы лежат и в пространстве V, то можно также написать
(еi)=a1ie1+a2ie2+…+akiek+0ek+1+…+0en, i=1, 2, …, k.