Что же касается отдельных базисных векторов ek+1, ek+2, …, en, то, поскольку они не принадлежат W, их образы выражаются через базис наиболее общим способом и получаем следующую картину:
(е1)=a11e1+a21e2+…+ak1ek+0ek+1+…+0en (е2)=a12e1+a22e2+…+ak2ek+0ek+1+…+0en (еk)=a1ke1+a2ke2+…+akkek+0ek+1+…+0en (еk+1)=a1,k+1e1+a2,k+1e2+…+ak,k+1ek+ ak+1,k+1ek+1+…+an,k+1en (еn)=a1ne1+a2ne2+…+aknek+ ak+1,nek+1+…+annen.Отсюда видно, что матрицы всех элементов группы G в предствлении Т будут одновременно иметь следующий вид:
Поэтому на языке матриц матричное представление называется приводимым, если все матрицы его могут быть записаны при определенном выборе базиса в виде (6). Если же ни при каком выборе базиса матрицы представления нельзя записать в указанном виде, представления называются неприводимыми.
3. Представления групп и модули
Рассмотрим конструкцию, позволяющую, зная представления групп, построить модуль М над кольцом K, связанный с этим представлением. Пусть теория представлений групп сформулирована на языке матриц и линейных операторов. Все матрицы данного порядка (линейные операторы в n-мерном пространстве) образуют относительно операций сложения и умножения матриц (линейных операторов) кольцо. Матрицы (линейные операторы) образуют алгебру в смысле следующего определения.
Определение 7. Алгеброй А над полем Р называется множество, в котором введены операции сложения и умножения элементов, а также операция умножения lаÎА, lÎР, аÎА элементов поля Р на элементы из А, причем: 1) относительно операций сложения и умножения А является кольцом; 2) относительно операций сложения и умножения на элементы поля Р алгебра является векторным пространством; 3) операции умножения элементов кольца и умножения на элементы из поля связаны аксиомой
l(ab)=(la)b=a(lb); lÎP; a, bÎA (7)
Матрицы, которые сопоставляются элементами группы в представлении Т, составляют лишь часть из множества всех матриц Мn, что следует хотя бы из того, что они невырождены. Однако, если Т(g1), Т(g2), …, T(gs), s=|G| - все матрицы представления группы G, то с ними можем связать алгебру, состоящую из всевозможных линейных комбинаций этих матриц вида
K=a1Т(g1)+a2Т(g2)+..+asT(gs); aiÎR или С (8)
Пусть Р – поле комплексных или вещественных чисел. Рассмотрим формальные суммы вида
a=a1g1+a2g2+…+angn; aiÎP; giÎG; i=1, 2, …, n; n=|G| (9)
Подчеркнем, что так как в группе G есть только одна операция – умножение, левую часть нельзя рассчитывать как результат сложения элементов правой части. Назовем две суммы
и равными, если ai=bi. Введем операцию сложения формальных сумм по правилу:a+b=(a1+b1)g1+(a2+b2)g2+…+(an+bn)gn=
; gi=ai+bi.Видим, что на множестве формальных сумм определена операция сложения, так как в результате операции снова получилась формальная сумма вида (9). Введем далее операцию умножения формальных сумм. Получим кольцо, которое называется групповым кольцом группы G над полем Р и обозначается в виде PG. Это кольцо можно превратить в алгебру. Для этого надо определить умножение lÎP на aÎPG. Умножение задается по формуле
. (10)Относительно сложения и умножения по этой формуле PG представляет собой векторное пространство (аксиома (7)). Построенная алгебра называется групповой алгеброй группы G и обозначается, как и групповое кольцо, в виде PG.
Если сопоставить каждому элементу gi в выражении (9) матрицу T(gi) этого элемента в представлении Т, то получим матрицу (8), которую обозначим буквой K, так как она является элементом группового кольца матриц K. Как следует из определения модуля, главное при построении модуля – ввести умножение векторов на элементы группового кольца. Пусть V – пространство представления Т группы G. Произвольный вектор v этого пространства зададим координатами. Если А – матрица линейного оператора
, действующего в векторном пространстве, то можно получить вектор v1, в который переходит вектор v под действием оператора . Для этого надо просто умножить по правилу умножения матриц вектор v на матрицу А. Аналогично выполняется умножение вектора v на элемент a группового кольца (и алгебры) PG:va=vk=v1, aÎPG, v1ÎV, kÎK. (11)
Теперь, используя правило умножения (11) легко проверить условия определения модуля. Полученный модуль М называется модулем представления Т.
Если известен модуль М над групповой алгеброй PG, то можно получить представление, связанное с этим модулем. Так как группе G принадлежит единица I, то каждый элемент pÎP можно записать в виде p=pI. Отсюда следует, что модуль М является векторным пространством над полем Р. Поэтому каждому элементу aÎPG можно сопоставить оператор
(a), действующий в векторном пространстве М по правилу (a)(m)=ma(12)В частности, любому элементу gÎG можно сопоставить оператор
(g), действующий по правилу (g)(m)=mg. Сопоставляя всем элементам группы G операторы (12), и получим представление Т, связанное с модулем М.Учитывая отмеченное соответствие между модулями и представлениями, можно перевести на язык модулей основную терминологию теории представлений. Так, подмодулю М1 модуля М соответствует представление Т1, которое называется подпредставлением представления Т. Тривиальные подмодули модуля М – это сам модуль М и нулевой модмодуль О. Если все подмодули модуля М тривиальны, он называется неприводимым модулем, а соответствующее ему представление – неприводимым представлением. Если же модуль М имеет нетривиальный модмодуль, он называется приводимым модулем, ему соответствует приводимое представление.
4. Представление алгебр и модули
Обозначим через EndpV алгебру линейных операторов векторного пространства V над полем Р и пусть А – произвольная алгебра.
Определение 8. Представлением алгебры А называется сопоставление каждому элементу aÎA линейного оператора
ÎEndpV, причем должны выполняться следующие условия:1) 1®
, где - единичный оператор;2) pa®p
; pÎP; aÎA;3) a+b®
+ ; a, bÎA; , Î EndpV;4) ab®
; a, bÎA.Определение 8 является иной формулировкой определения модуля над кольцом А, если кольцо является алгеброй над полем Р.
Определение 9. Модулем над алгеброй А называется абелева группа по сложению М, для которой определена операция умножения элементов из А на элементы из М: amÎM, aÎA, mÎM и при этом выполняются следующие условия:
1) (a+a¢)m=am+a¢m;
2) (aa¢)m=a(a¢m);
3) em=m;
4) a(m+m¢)=am+am¢;
5) (aa)m=a(am)=a(am), aÎP.
Здесь дано определение левого модуля.
Теорема 1. Всякий левый (правый) модуль М над кольцом А, которым является алгебра, представляет собой также векторное пространство над полем Р, причем для всех aÎA, mÎM, lÎP справедливы равенства
l(ma)=(lm)a=m(la); l(am)=a(lm)=(la)m.
2.5 Характеры представлений
1. Определение и свойства характеров
Определение 1. След матрицы А=(аij) размера n´n есть сумма ее элементов, стоящих по главной диагонали:
TrA=a11+a22+…+ann (14)
Определение 2.След матрицы Т(g), представляющий элемент g в матричном представлении Т группы G, называется характеристикой элемента g в представлении Т и обозначается cT(g).
Определение 3. Совокупность характеристик всех элементов g группы G, составленных для данного представления Т, называется характером представления Т и записывается как cT. Если Т – матричное представление группы G над полем вещественных или комплексных чисел Р, то характеристика каждого элемента группы является вещественным или комплексным числом и, следовательно, характер есть отображение cT группы G в поле Р, определяемое следующим образом: