В колоночном варианте распределительной хроматографии ПФ служит органический растворитель, не смешивающийся с НФ. НФ обычно служит вода, адсорбированная на твердом носителе. В качестве носителей чаще используют силикагель (твердая кремниевая кислота), целлюлозу, крахмал и другие вещества, хорошо удерживающие молекулы воды на своей поверхности.
Эффективность колонки связана с вязкостью, коэффициентом диффузии и другими физическими свойствами жидкостей. Хроматографирование на колонке особо вязких жидкостей - длительный процесс, поскольку их продвижение через пористый носитель под действием силы тяжести очень мало. Для ускорения процесса хроматографирование проводят под давлением, создаваемsv насосом высокого давления. Применение давления сделало метод более динамичным и эффективным, что и отразилось в его названии - высокоэффективная жидкостная хроматография (ВЭЖХ).
Плоскостным вариантом жидкостной адсорбционной хроматографии является тонкослойная хроматография (ТСХ), а жидкость-жидкостной - бумажная (БХ). ТСХ и БХ очень близки по технике выполнения. НФ (силикагель, крахмал, целлюлоза, Al2O3 и др.) в ТСХ наносится тонким слоем на стеклянную, металлическую (алюминиевую фольгу) или пластиковую пластинку, а в БХ в качестве НФ обычно служит вода, адсорбированная на твердом носителе - специальной хроматографической бумаге.
Для проведения анализа каплю анализируемой смеси наносят на стартовую линию в 2...3 см от края пластинки или полоски бумаги и высушивают. Затем край носителя погружают в растворитель (вода, органический растворитель), который действует как ПФ. При этом растворитель не должен касаться нанесенного пятна. Носитель можно подвесить так, чтобы поток растворителя двигался сверху вниз (нисходящая хроматограмма) и наоборот (восходящая) или от центра к краям (радиальная).
Рис. 1. Способ обработки бумажной хроматографии.
Под действием капиллярных сил растворитель движется вдоль слоя сорбента и с разной скоростью переносит компоненты смеси, что приводит к их пространственному разделению. Когда фронт растворителя достигнет требуемого уровня, хроматограмму вынимают из растворителя, дают ему испариться, затем проводят проявление пятен распределившихся веществ путем опрыскивания хроматограммы реагентом с помощью пульверизатора и последующего облучения УФ-лампой. В химических методах проявления в реагент добавляют реактивы, дающие с анализируемыми веществами окрашенные соединения. В физических методах используют, например, способность некоторых веществ флуоресцировать под действием УФ - лучей, для чего в проявитель добавляют флуоресцирующий индикатор. На проявленной хроматограмме обычно измеряют расстояния, пройденные растворителем L и компонентом l за определенное время и находят величину R= l/L (рис. 1). При качественном анализе применяют метод “свидетелей”, для чего на линию старта рядом с анализируемой смесью наносят индивидуальные вещества. Сравнивая значения R индивидуальных веществ и компонентов смеси, проводят их отождествление.
Для количественного анализа измеряют обычно площади зон компонентов на хроматограмме (например, с помощью миллиметровой кальки или др.) и по заранее полученному градуировочному графику зависимости S = f(n) находят количество веществ. Но применяют и другие варианты, например, выпаривают или удаляют вещества с носителя и затем определяют их количества в объеме полученного раствора.
В основе ионообменной хроматографии лежит обратимый стехиометрический обмен ионов анализируемого раствора на подвижные ионы сорбентов, называемых ионитами или ионнообменниками. Причиной разделения является различная способность ионов анализируемого раствора к обмену.
В качестве ионитов используют природные или синтетические, твердые, нерастворимые в воде неорганические и органические высокомолекулярные кислоты, основания и их соли, содержащие в своем составе активные (ионогенные) группы. Иониты делятся на катиониты и аниониты.
Катиониты - сорбенты, способные к обмену катионами. катиониты содержат в своем составе ионогенные группы различной степени кислотности, например сульфогруппу - SO3H, карбоксильную группу - COOH, ион водорода которых способен к катионному обмену.
Химическую формулу катионитов схематично изображают RSO3-H+, RSO3-Na+ или просто [R] H, [R] Na, где R - сложный органический радикал. Наиболее часто применяются сильнокислотные катиониты марок КУ-1, КУ-2, СДВ-2 и др.
Схема катионного обмена:
[R] H + Ме+ [R] Ме + H+
Аниониты - сорбенты, способные к обмену анионами.
Аниониты содержат в своем составе основные ионогенные группы, например, аминогруппы различной степени замещения: - NH2, =NH, N, = NH2OH, NHOH, способные к обмену гидроксид-ионов на различные анионы. Формулы анионитов схематично изображают: RNH3+OH - , RNH3+Cl - или просто [R] OH, [R] Cl. Cхема анионного обмена:
[R] OH+A - [R] A+ OH -
Применяют аниониты марок АВ-17, АН-1, ЭДЭ-10 и др.
Существуют также амфотерные иониты - сорбенты, способные как к катионному, так и к анионному обмену.
Поглощение ионов зависит от природы и структуры ионита, природы анализируемых веществ, условий проведения эксперимента (температуры, pH и др.). Каждый ионит способен поглощать определенное количество ионов, т.е. обладает определенной емкостью. Различают статическую обменную емкость (СОЕ) - количество ммоль эквивалентов иона, поглощенного за определенное время 1 г сухого ионита, и динамическую обменную емкость (ДОЕ) - количество эквивалентов ионов, поглощенных слоем ионита высотой 20 см и поперечным сечением 1 см2 при скорости пропускания 0,5 дм3/ч.
Эффект поглощения данного иона характеризуется коэффициентом распределения
Красп =
,где Сионит и Ср-р - равновесные концентрации ионов в соответствующих фазах; m - масса ионита; г; V - объем водной фазы, см3.
Ионный обмен является физико-химическим процессом, поэтому на коэффициент разделения влияют как химические, так и чисто физические факторы.
К химическим относятся следующие факторы: рН раствора, природа разделяемых ионов, их концентрация в растворе, склонность к гидратации, химический состав ионита и т.д. Например, с увеличением рН катионит увеличивает обменную емкость, а анионит - уменьшает.
К физическим факторам относятся: скорость протекания раствора через колонку, размер зерен ионита, высота колонки, температура раствора и т.д.
Для достижения оптимального разделения существенно подобрать необходимое количество ионита. Если известна константа распределения Красп и емкость данного ионита Q, то величина отношения массы ионита (m, г) к объему анализируемого раствора (V, см3), которая обеспечит уменьшение концентрации иона Меn+ в растворе от начальной величины Сн до требуемого значения Ск,
.Перед анализом ионообменную колонку регенерируют, т.е. переводят заполняющий ее ионит в определенную ионообменную форму. Зарядка катионита Н+ ионами, а анионита ОН ионами проводится путем пропускания через колонку определенного количества кислоты или основания. Затем ионит отмывают водой от избытка кислоты или основания и пропускают через него с определенной скоростью анализируемый раствор. Колонку промывают водой или другим элюентом, собирая элюат целиком или по фракциям. Ионы, поглощенные ионитом, могут быть элюированы соответствующим растворителем. Катионы, как правило, элюируют кислотой:
[R] Me + H+ [R] H + Me+;
а анионы - щелочью:
[R] A + OH [R] OH +A.
Ионообменную хроматографию применяют в следующих случаях:
1) для разделения компонентов анализируемой смеси, отделения катионов и анионов, разделения катионов, разделения анионов и т.д. Например, при добавлении к смеси ионов Cu2+, Zn2+, Cd2+, Pb2+, Bi3+ соляной кислоты образуются хлоридные комплексы [CuCl4] 2-, [ZnCl4] 2-, [CdCl4] 2-, [PbCl3] -, [BiCl4] - , стойкость которых растет от Cu к Bi. При пропускании через анионитную колонку комплексы поглощаются. Далее последовательно вымывают металлы разбавленной HCl, H2O и HNO3: 2-молярным раствором HCl вымывают Cu, 0.6 М HCl - Zn, 0.3М HCl - Cd, H2O - Pb, HNO3 - Bi;
2) для получения аналитических концентратов. при пропускании больших объемов разбавленных растворов через слой ионита и последующем извлечении поглощенного вещества малым объемом растворителя возможно повышение концентрации вещества в 200-500 раз;
3) для обнаружения ионов. Разработаны методы выделения и обнаружения всех наиболее важных ионов.
Гельхроматография - это совершенно своеобразный вид хроматографии, основанный на использовании различия в размерах молекул разделяемых веществ. Метод называют также гельфильтрационным или ситовым. НФ является растворитель, находящийся в порах геля. Гелем называют студнеобразные коллоидные растворы, в которых разбухшие частицы твердой фазы равномерно распределены в жидкой фазе.
Гель готовят на основе природных (крахмал, агар-агар) или синтетических (декстран, полиакриламид и др.) соединений.
В процессе гельхроматографирования могут быть отделены мелкие частицы, способные проникать в поры геля, от крупных. Меняя состав растворителя, можно менять степень набухания твердой фазы и, следовательно, размеры пор геля, что позволяет проводить тонкие разделения смесей.