Смекни!
smekni.com

Термодинамико-топологический анализ (стр. 2 из 3)

(6)

Или теоретически можно представить себе движение фигуративной точки в поле градиента температуры, при котором в каждой точке траектории градиент лежит на касательной прямой к этой траектории. Такое движение описывается системой уравнений вида [6]:

(7)

Дифференциал температуры в общем виде представляется как скалярное произведение градиента температуры на вектор изменения состава одной из фаз. Для жидкой фазы:

(8)

Согласно уравнению (8), равенство нулю дифференциала равновесной температуры

будет реализовываться в двух случаях:

1) Вектор-градиент равновесной температуры равен нулю

, то есть равны нулю все частные производные скалярной величины по переменным концентрациям компонентов. Этот случай характеризует особую точку температурной поверхности размерности
, которая может быть минимумом, максимумом, минимаксом.

2) Векторы

и
ортогональны друг другу, и их произведение равно нулю. Это условие соответствует движению вдоль изотермоизобарического многообразия, вдоль которого
и
.

Уравнение Ван-дер-Ваальса–Сторонкина [7] – это математическая модель, описывающая равновесное распределение всех компонентов между фазами и устанавливающая соответствие между параметрами фазового перехода. Также это уравнение фазового обмена, связывающее фазовые эффекты (объемный, энтропийный, эффект химических потенциалов), которые отражают локальное поведение системы при переходе бесконечно малого количества одной фазы в конечное количество другой фазы.

В общем виде для двухфазной

-компонентной системы уравнение Ван-дер-Ваальса–Сторонкина записывается так [7]:

(9)

Уравнение связи между векторным полем нод и скалярным полем равновесных температур [3, 6, 8] позволяет легко анализировать фазовое равновесие для многокомпонентных смесей. Данное уравнение записывается как система уравнений в частных производных и при

имеет следующий вид:

(10)

Для случая

:

,(11)

где

– изменение энтропии при фазовом дифференциальном переходе бесконечно малого количества смеси из жидкости (
) в пар (
);

– изменение объема при фазовом дифференциальном переходе бесконечно малого количества смеси из жидкости (
) в пар (
);

– вторые производные изобарно-изотермического потенциала Гиббса для жидкой (
) фазы;

– концентрации
-компонента в жидкой и паровой фазе соответственно.

В общем виде уравнения (10) и (11) можно представить так [3, 6, 8]:

,(12)

(13)

С помощью оператора

в уравнениях (1.13) и (1.14) связывают вектор-ноду жидкость–пар и градиент температуры (при
) или градиент давления (при
). На рис.3 приведена общая картина расположения векторов, взаимосвязанных уравнением фазового обмена [8].

Как видно, в первом случае векторы ноды и градиента температур направлены в разные стороны и образуют между собой тупой угол; во втором – векторы ноды и градиента давлений направлены в одну сторону и образуют между собой острый угол, что объясняет знак "–" в уравнении (10). После действия оператора G вектор ноды изменяет свое направление и модуль и становится вектором

. Вектор градиента после умножения на скалярный множитель изменяет свой модуль и также становится равным по величине вектору
.

(а) (б)

Рис.3. Взаимное расположение изотермоизобарического многообразия, векторов ноды жидкость–пар и градиентов температуры (а) и давления (б) в трехкомпонентных системах.

Из сравнения уравнений (10) и (11) следует частный вывод. Для некоторого вектора состава жидкой фазы отнимем одно уравнение от другого. При определенных

и
получим следующий результат [8]:

(14)

или:

(15)

Поскольку

и
– некоторые скалярные множители, то для закрепленного состава системы градиенты стационарного поля температур кипения при
и градиенты стационарного поля давлений при
колинеарны. Последнее согласуется с физическим смыслом, так как в этом случае точка состава смеси принадлежит определенному изотермоизобарическому многообразию, которое является многообразием уровня как для температуры, так и для давления. Однако векторы имеют разный знак, и их линейная (в точке) комбинация всегда равна нулю:

(16)

Следовательно, эти два вектора всегда лежат на одной прямой, ортогональной многообразию уровня, и имеют противоположное направление.

Подробное исследование уравнений (10) и (11) было проведено в [8]. Отмечено, что полученные результаты можно использовать для выявления различных корреляций и тонких закономерностей фазового равновесия жидкость–пар в многокомпонентных системах, в частности:

- для определения взаимосвязи топографического представления равновесной температуры кипения смеси и хода

-линий, в том числе единичных;

- для определения экстремумов температуры (давления) по направлению;

- для корреляции хода изотермоизобар и коэффициентов распределения компонентов;

- для получения некоторых общих выводов относительно различных термодинамических свойств путём исследования полученных уравнений в избыточных функциях.

Подробное исследование свойств скалярных полей равновесных температур двухфазных трехкомпонентных систем было проведено в [9-11].