ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
Вологодский государственный Технический Университет
Кафедра: электроснабжение
Контрольная работа
по химии
ХИМИЧЕСКАЯ СВЯЗЬ И СТРОЕНИЕ ВЕЩЕСТВА
Выполнил: Артамонов Евгений Николаевич
Группа: ЗЭСВ-11
Шифр:09013203102
Вологда 2010
СОДЕРЖАНИЕ
I Химическая связь
1.1 Химическая связь и типы химической связи
1.2 Ковалентная связь
1.3 Ионная связь
1.4 Ионные кристаллы
1.5 Металлическая связь
1.6 Связь в комплексных соединениях
1.7 Валентность и степень окисления элементов
1.8 Стеохимическая валентность
1.9 Заряд ионов
II Строение вещества
2.1 Молекулы химических соединений
2.2 Размеры и масса атомов и молекул
2.3 Строение многоатомных молекул
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
Химические элементы встречаются в природе главным образом не в виде отдельных атомов, а в виде сложных или простых веществ. Лишь благородные газы – гелий, неон, аргон, криптон и ксеон – находятся в природе в атомном состоянии, что объясняется устойчивостью электронных оболочек атомов благородных газов. Во всех других простых и сложных веществах атомы связаны химическими силами. Существует несколько типов химической связи, важнейшие из них – ковалентная, ионная и металлическая.
В общем случае химическая связь образуется, если полная энергия системы, состоящей из взаимно-действующих атомов, при сближении атомов понижается.
Пользуясь понятием электроотрицательности элементов, можно предвидеть основные три случая химического взаимодействия между атомами:
1. Химические реакции происходят между атомами элементов, электроотрицательности которых резко отличаются, например, атомами щелочных металлов и атомами галогенов.
2. Химические реакции происходят между атомами элементов, электроотрицательности которых одинаковы. Такое взаимодействие наблюдается при образовании газов (Н2 ,Р2, Cl 2, О2, N2), молекулы которых состоят из 2-х одинаковых атомов.
3. Вступать в химические реакции могут атомы элементов, электроотрицательности которых отличаются, но не очень сильно. Этот случай является промежуточным между двумя первыми крайними и встречаются особенно часто. Примерами его является образование молекул водорода Н2О, хлородоводорода HCl, метана СН4, и многих других веществ.
В зависимости от того, к какому случаю следует отнести данное химическое взаимодействие элементов, различают определенный тип химической связи. Надо учесть, что между этими типами химических связей нет резких границ. Между ними существует постепенный взаимопереход. Поэтому во многих химических соединениях одновременно существуют разные типы связей. Это объясняет последовательным изменением электроотрицательностей химических элементов.
Химическая связь – это взаимное сцепление атомов в молекуле и кристаллической решетке в результате действия между атомами электрических сил применения.
Появления атомной модели бора, впервые объяснившей строение электронной оболочки атома, способствовало созданию представления о химической связи и ее электронной природе. В 1915 году немецкий физик Коссель дал объяснение химической связи в солях, в 1916 году. Американский физико-химик Льюис предположил трактовку химической связи в молекулах. Коссель и Льюис исходили из представления о том, что атомы элементов обладают тенденцией к достижению электронной конфигурации благородных газов. Атомы благородных газов, кроме элемента первого периода - гелия имеют во внешнем слое, т.е. на высшем энергетическом уровне, устойчивый объект (восемь) электронов; при таком строении способность атомов к вступлению в химические реакции минимальна, например, в противоположность атомам водорода, кислорода, хлора и другим, атомы благородных газов не образуют двухатомных молекул. Представления Косселя и Льюиса получили в истории химии название октетной теории, или электронной теории валентности.
Валентность элементов главных групп Периодической системы зависит от числа электронов, находящихся во внешнем слое электронной оболочке атома. Поэтому эти внешние электроны принято называть валентными. Все изменения, происходящие в электронных оболочках атомов при химических реакциях, касаются только валентных электронов. Для элементов побочных групп в качестве валентных могут выступать как электроны высшего энергетического уровня, так и электроны внутренних незавершенных подуровней.
Развитие квантово-механических представлений о строении атома и создание орбитальной модели атома привели к выработке двух современных научных подходов для объяснения химической связи – метода валентных связей и метода молекулярных орбиталей. Оба метода не взаимоисключают, а дополняют друг друга и позволяют трактовать процесс формирования химической связи и выяснить внутреннее строение веществ.
Различают три основных (модельных) типа химической связи: ковалентную, ионную и металлическую связи. Эти типы химической связи не существуют изолированно друг от друга в реальных веществах, они являются только моделями различных форм химического связывания, которые реализуются в действительности как в промежуточные формы связи.
Значительно более слабые, чем ковалентная, ионная и металлическая связи, межмолекулярные силы, которые обеспечивают взаимное удерживание твердого диоксида углерода, или в жидкостях, например, в воде. Эти силы называются силами Ван-дер-Ваальса.
Химическая связь, возникающая в результате образования общих (связывающих) электронных пар, называется ковалентной или атомной связью.
Простейший пример ковалентной связи – образование молекулы водорода Н2. Атомы водорода имеют следующую электронную оболочку: 1S1. Внешний энергетический уровень является незавершенным: до завершения не хватает одного электрона. При сближении двух атомов водорода происходит взаимодействие электронов с антипараллельными стенами с формированием общей электронной пары:
Н
Объяснение механизма образования химической связи за счет общих электронных пар лежит в основе метода валентных связей. Схему образования ковалентной связи можно также показать, обозначив неспаренный электрон внешнего энергетического уровня атома одной точкой, а общую электронную пару – двумя точками:
Н· + ·Н
Н : НОбщую электронную пару или ковалентную связь часто обозначают черточкой, например, Н – Н.
Общая электронная пара образуется в результате перекрывания S – орбиталей атомов водорода, на которых находятся электроны с противоположными спиновыми квантовыми числами. При этом в области перекрывания орбиталей создается повышенная электронная плотность.
Рассмотрим возникновение ковалентной связи в молекуле фтора. Атом фтора имеет семь электронов на внешнем энергетическом уровне, причем на
2р - подуровне находится один неспаренный электрон:9F 1S2 2S2 2P5 2
1 P
S
При сближение двух атомов фтора происходит перекрывание 2р – орбиталей с неспаренными электронами, в результате формируется общая электронная пара:
F+ F
FFили F – FУ каждого атома фтора в молекуле Р2 сохраняется три неподеленные электронные пары.
Существуют молекулы, в которых между двумя атомами возникают две или три общие электронные пары. Такие ковалентные связи называются двойными и тройными, а общее их название – кратные связи.
Например, в образовании химических связи в молекуле азота N2 участвуют по три электрона каждого атома азота:
7N 1S2 2S2 2p3 2
1
PS
В этом случае образуется три общие электронные пары:
N N или N
NТаким образом, ковалентной называется связь, осуществляемая одной или несколькими общими электронными парами.