В работах Клемма дано и физическое обоснование давно сложившегося разделения редкоземельных элементов на две подгруппы – цериевую и иттриевую. В первую входят лантан и лантаноиды от церия до гадолиния, во вторую – иттрий и лантаноиды от тербия до лютеция. Отличие между элементами двух этих групп – направление спинов у электронов, заполняющих главную для лантаноидов четвертую оболочку.
Спины – собственные моменты количества движения электронов – у первых имеют один и тот же знак; у вторых же половина электронов имеет спины одного знака, а половина – другого.
Но хватит об аномалиях, объяснимых только с помощью квантовой механики, – вернемся к закономерностям.
Когда речь идет о лантаноидах, закономерности тоже порой кажутся алогичными. Пример тому – лантаноидное сжатие.
Лантаноидным сжатием называют открытое норвежским геохимиком Гольдшмидтом закономерное уменьшение размеров трехвалентного иона редкоземельных элементов – от лантана к лютецию. Казалось бы, все должно быть наоборот: в ядре атома церия на один протон больше, чем в ядре атома лантана; ядро празеодима больше, чем ядро церия, и так далее. Соответственно растет и число электронов, вращающихся вокруг ядра. И если представить атом таким, как его обычно рисуют на схемах, – в виде маленького диска, окруженного вытянутыми орбитами невидимых электронов, орбитами разных размеров, то, очевидно, прибыль электронов должна была бы увеличить размеры атома в целом. Или, если отбросить наружные электроны, число которых может быть неодинаковым, такая же закономерность должна наблюдаться в размерах трехвалентных ионов лантана и его команды.
Истинное положение вещей иллюстрирует диаграмма лантаноидного сжатия. Радиус трехвалентного иона лантана равен 1,22 Ǻ, а такого же иона лютеция – всего 0,99 Ǻ. Все не по логике, а как раз наоборот. Однако до физического смысла явления лантаноидного сжатия докопаться нетрудно и без квантовой механики, достаточно лишь вспомнить основные законы электромагнетизма.
Заряд ядра и число электронов вокруг него растут параллельно. Сила притяжения между разноименными зарядами тоже растет; более тяжелое ядро сильнее притягивает электроны, укорачивает их орбиты. А поскольку в атомах лантаноидов наиболее насыщены электронами глубинные орбиты, электрическое притяжение оказывает еще более сильное действие.
Близость ионных радиусов и общность химических свойств – вот главные причины совместного присутствия лантаноидов в минералах.
О минералах редких земель
О главном из них – монаците – рассказано выше. Второй по важности редкоземельный минерал – бастнезит – во многом похож на него. Бастнезит тоже тяжелый, тоже блестящий, тоже не постоянен по окраске (чаще всего светло-желтый). Но химически с монацитом его роднит только большое содержание лантана и лантаноидов. Если монацит – фосфат, то бастнезит – фторокарбонат редких земель, его состав обычно записывают так: (La, Ce)FCO3. Но, как часто бывает, формула минерала не полностью отражает его состав. В данном случае она указывает лишь на главные компоненты: в бастнезите 36,9...40,5% окиси церия и почти столько же (в сумме) окислов лантана, празеодима и неодима. Но, конечно, в нем есть и остальные лантаноиды.
Кроме бастнезита и монацита, практически используют, хотя и ограниченно, еще несколько редкоземельных минералов, в частности гадолинит, в котором бывает до 32% окислов РЗЭ цериевой подгруппы и 22...50% – иттриевой. В некоторых странах редкоземельные металлы извлекают при комплексной переработке лопарита и апатита.
Рис. 4. Относительное содержание лантаноидов в земном коре. Закономерность: четные распространены больше нечетных
Всего известно около 70 собственно редкоземельных минералов и еще около 200 минералов, в которые эти элементы входят как примеси. Это свидетельствует о том, что «редкие» земли вовсе не такие уж редкие, а это старинное общее название скандия, иттрия и лантана с лантаноидными – не более чем дань уважения прошлому. Они не редки – церия в земле больше, чем свинца, а самые редкие из редкоземельных распространены в земной коре намного больше, чем ртуть. Все дело в рассеянности этих элементов и сложности отделения их один от другого. Но, конечно, лантаноиды распространены в природе не одинаково. Элементы с четными атомными номерами встречаются значительно чаще, чем их нечетные соседи. Это обстоятельство, естественно, сказывается на масштабах производств и ценах на редкоземельные металлы. Самые труднодоступные лантаноиды – тербий, тулий, лютеций (заметьте, все это лантаноиды с нечетными атомными номерами) – стоят дороже золота и платины. А цена церия более 99%-ной чистоты – всего 55 рублей за килограмм (данные 1970 г.). Для сравнения укажем, что килограмм мишметалла стоит 6...7 рублей, а ферроцерия (10% железа, 90% редкоземельных элементов, в основном церия) – всего пять. Масштабы использования РЗЭ, как правило, пропорциональны ценам...
Лантаноиды в практике
Осенью 1970 г. Ученый совет Института минералогии, геохимии и кристаллохимии редких элементов АН СССР собрался на расширенное заседание с довольно необычной повесткой дня. Обсуждались возможности редкоземельных элементов «в свете проблем сельского хозяйства».
Вопрос о влиянии этих элементов на живые организмы возник не случайно. С одной стороны, известно, что редкие земли часто входят как примесь в состав важнейших для агрохимии минералов – фосфоритов и апатита. С другой стороны, выявлены растения, могущие служить биохимическими индикаторами лантана и его аналогов. Так, например, в золе листьев южного ореха гикори до 2,5% редкоземельных элементов. Повышенная концентрация этих элементов обнаружена также в сахарной свекле и люпине. Содержание редкоземельных элементов в почве тундр достигает почти 0,5%.
Маловероятно, чтобы эти распространенные элементы не влияли на развитие растений, а возможно, и организмов, стоящих на других ступенях лестницы эволюции. Еще в середине 30-х годов советский ученый А.А. Дробков исследовал влияние редких земель на разные растения. Он экспериментировал с горохом, репой и другими культурами, вводил редкие земли вместе с бором, марганцем или без них. Результаты опытов говорили, что редкие земли нужны для нормального развития растений... Но прошло четверть века, прежде чем эти элементы стали относительно доступны. Окончательный ответ на вопрос о биологической роли лантана и его команды еще предстоит дать.
Металлурги в этом смысле значительно обогнали агрохимиков. С лантаном и его командой связано одно из самых значительных событий последних десятилетий в черной металлургии.
Высокопрочный чугун обычно получали, модифицируя его магнием. Физический смысл этой добавки станет ясным, если вспомнить, что в чугуне 2...4,5% углерода в виде чешуйчатого графита, который и придает чугуну главный его технический недостаток – хрупкость. Добавка магния заставляет графит перейти в более равномерно распределяющуюся в металле шаровидную или глобулярную форму. В результате значительно улучшается структура, а с ней и механические свойства чугуна. Однако легирование чугуна магнием требует дополнительных затрат: реакция идет очень бурно, расплавленный металл брызжет во все стороны, в связи с чем приходилось сооружать для этого процесса специальные камеры.
Редкоземельные металлы действуют на чугун аналогично: «убирают» окисные примеси, связывают и выводят серу, способствуют переходу графита в глобулярную форму. И при этом не требуют специальных камер – реакция протекает спокойно. А результат?
На тонну чугуна вводят всего 4 кг (0,4%) сплава ферроцерия с магнием, и прочность чугуна увеличивается вдвое! Такой чугун во многих случаях можно использовать вместо стали, в частности при изготовлении коленчатых валов. Мало того, что высокопрочный чугун на 20...25% дешевле стальных отливок и в 3...4 раза дешевле стальных поковок. Стойкость против истирания у чугунных шеек валов оказалась в 2...3 раза выше, чем у стальных. Коленчатые валы из высокопрочного чугуна уже работают в тепловозах и других тяжелых машинах.
Редкоземельные элементы (в виде мишметалла и ферроцерия) добавляют и в сталь разных сортов. Во всех случаях эта добавка работает как сильный раскислитель, превосходный дегазатор и десульфатор. В некоторых случаях редкими землями легируют... легированную сталь. Хромоникелевые стали трудно прокатывать – всего 0,03% мишметалла, введенные в такую сталь, намного увеличивают ее пластичность. Это облегчает прокатку, изготовление поковок, обработку металла резанием.
Редкоземельные элементы вводят и в состав легких сплавов. Известен, например, жаропрочный сплав алюминия с 11% мишметалла. Добавки лантана, церия, неодима и празеодима позволили в три с лишним раза поднять температуру размягчения магниевых сплавов и одновременно повысили их коррозионную стойкость. После этого сплавы магния с редкоземельными элементами стали применять для изготовления деталей сверхзвуковых самолетов и оболочек искусственных спутников Земли.
Редкоземельные добавки улучшают свойства и других важных металлов – меди, хрома, ванадия, титана... Не удивительно, что металлурги год от года все шире используют редкоземельные металлы.
Лантан и его аналоги нашли применение и в других областях современной техники. В химической и нефтяной промышленности они (и их соединения) выступают в качестве эффективных катализаторов, в стекольной – как красители и как вещества, придающие стеклу специфические свойства. Разнообразно применение лантаноидов в атомной технике и связанных с нею отраслях. Но об этом – позже, в разделах, посвященных каждому из лантаноидов. Укажем только, что даже созданный искусственно прометий нашел применение: энергию распада прометия-147 используют в атомных электрических батарейках. Одним словом, время безработицы редкоземельных элементов закончилось давно и бесповоротно.