Опыт 2. К раствору сульфата алюминия добавить раствор хлорида бария. Описать наблюдаемые явления, объяснить их, написать уравнение происходящей реакции в молекулярной, полной и сокращенной ионных формах. Проанализировать полученные вещества.
Опыт 3. К раствору карбоната натрия добавить раствор хлорида алюминия. Описать наблюдаемые явления, объяснить их, написать уравнение происходящей реакции в молекулярной, полной и сокращенной ионных формах. Проанализировать полученные вещества.
Опыт 4. К раствору сульфата меди (II) добавить раствор карбоната натрия. Описать наблюдаемые явления, объяснить их, написать уравнение происходящей реакции в молекулярной, полной и сокращенной ионных формах. Проанализировать полученные вещества.
Опыт 5. К раствору хлорида железа (III) добавить раствор карбоната натрия. Описать наблюдаемые явления, объяснить их, написать уравнение происходящей реакции в молекулярной, полной и сокращенной ионных формах. Проанализировать полученные вещества.
Обсуждение результатов эксперимента
Опыты 1 и 2. Первые два опыта не вызывают у детей удивления, это обычные обменные реакции. Учащиеся фиксируют выпадение осадков, записывают уравнения реакций в молекулярной, полной и сокращенной ионных формах.
Опыт 3. Смешав растворы хлорида алюминия и карбоната натрия, учащиеся наблюдают выделение газа и выпадение осадка. Если предположить, что идет реакция обмена, то газа быть не должно. Внесение в реакционный сосуд горящей лучины и ее угасание служит доказательством того, что образуется углекислый газ. Учащиеся полагают, что выпадающий осадок – карбонат алюминия. Чтобы определить состав осадка, они добавляют к промытому от исходного карбоната натрия осадку соляную кислоту. Газ при этом не образуется, осадок же растворяется. Если к осадку добавить раствор щелочи, то осадок тоже растворяется. Следовательно, осадок – гидроксид алюминия. В ходе дискуссии учащиеся приходят к объяснению этого процесса. Хлорид алюминия гидролизуется по катиону:
Al3+ +H2O<=>AlOH2+ + H+,(1)
AlOH2+ + H2O<=>Al(OH)2+ + H+.
Карбонат натрия гидролизуется по аниону:
CO32– + H2O <=>HCO3– + OH–.(2)
Ионы H+ и OH– связываются в молекулы воды, их концентрация понижается, равновесие реакций гидролиза (1) и (2) смещается в сторону продуктов реакций. Идут и последние ступени реакций гидролиза:
Al(OH)2+ + H2O<=>Al(OH)3↓ + H+,
HCO3– + H2O <=>OH– + H2CO3 (H2O+ CO2
).Суммарное уравнение реакции совместного гидролиза имеет вид:
2AlCl3 + 3Na2CO3 + 3H2O = 2Al(OH)3↓ + 3CO2
+ 6NaCl.Опыт 4. Учащиеся приливают раствор карбоната натрия к раствору сульфата меди(II). После проведения опыта 3 их уже не удивляет выделение газа, не поддерживающего горение. Они предполагают, что осадок – CuCO3 или Сu(OH)2. В таблице растворимости кислот, солей и оснований в воде указано, что соединение CuCO3 в водном растворе не существует. Учащиеся делают вывод, что осадок – это гидроксид меди(II). Смущает только цвет осадка – бирюзовый. Учитель просит получить гидроксид меди(II) взаимодействием сульфата меди(II) и гидроксида натрия. Выпавший осадок имеет голубой цвет. Учащиеся предполагают, что осадок, полученный при взаимодействии растворов CuSO4 и Na2CO3, это основная соль (СuOH)2CO3. Однако учитель может показать образец гидроксокарбоната меди(II), который имеет зеленый цвет. Учащиеся делают вывод, что осадок, полученный при взаимодействии CuSO4 и Na2CO3, – это смесь голубого Сu(OH)2 и зеленого (СuOH)2CO3. Процесс можно описать следующими уравнениями реакций:
2CuSO4 + 2Na2CO3 + H2O = (СuOH)2CO3 + CO2
+ 2Na2SO4,CuSO4 + Na2CO3 + H2O = Сu(OH)2 ↓+ CO2
+ Na2SO4.Опыт 5. В реакции солей FeCl3 и Na2CO3 учащиеся наблюдают выпадение бурого осадка и выделение газа, не поддерживающего горение. Довольно быстро они делают вывод, что совместный гидролиз хлорида железа, гидролизующегося по катиону, и карбоната натрия, гидролизующегося по аниону, приводит к гидроксиду железа(III) и оксиду углерода(IV). Эти вещества являются продуктами последних ступеней гидролиза исходных солей:
2FeCl3 + 3Na2CO3 + 3H2O = 2Fe(OH)3↓ + 3CO2
+ 6NaCl,2Fe3+ + 3CO32– + 3H2O = 2Fe(OH)3↓ + 3CO2
.Занятие № 9. Амфотерные соединения
Приведённые ниже опыты проводились при объяснении нового материала в изучении темы «Амфотерные оксиды и гидроксиды» у учеников 9-х классов (см. тематическое планирование для 9 класса, урок 3). Использовался теоретический материал учебника 9 класса О. С. Габриеляна Химия-9 [10], методическое пособие для учителя [9], настольная книга для учителя [6], рабочая тетрадь [11].
Цель работы:используя проблемный эксперимент, дать понятие об амфотерности оксидов и гидроксидов металлов и особенностях их химических свойств.
Форма проведения эксперимента: фронтальная (демонстрационный эксперимент)
Оборудование и реактивы:
Ход работы:
Проведение работы начинают с эвристической беседы.
Учитель: приведите классификацию простых веществ, оксидов, гидроксидов.
Ученик: простые вещества: металлы и неметаллы; оксиды: оксиды неметаллов (кислотные) и оксиды металлов (основные); гидроксиды: гидроксиды металлов и кислородсодержащие кислоты (гидроксиды неметаллов).
Учитель: предложите соответствующие друг другу химические формулы представителей простых веществ, оксидов и гидроксидов (для дальнейшего обсуждения учитель выбирает те соединения, которые необходимы ему для работы)
Ученик: простые вещества: металлы – Na, Ca, Zn, Fe, Al, Cr; неметаллы: S, O2, N2, Cl2; оксиды: основные – Na2О, CaО, ZnО, FeО, Fe2О3, Al2О3, Cr2О3, CrО; кислотые – SО3, SО2, N2О5, Cl2О7; гидроксиды: металлов – NaОН, Ca(ОН)2, Zn(ОН)2, Fe(ОН)2, Fe(ОН)3, Al(ОН)3, Cr(ОН)2, Cr(ОН)3 ; неметаллов – Н2SО4, Н2SО3, НNО3, НClО4, HCl.
Учитель: составьте возможные уравнения реакций между веществами: Ca, Zn, Al; CaО, ZnО, Al2О3; SО3; Ca(ОН)2, Zn(ОН)2, Al(ОН)3, Н2SО4
Ученик: Са + SО3→ ; Са + Н2SО4→ ; Zn + SО3→ ; Zn + Н2SО4→ ; Al + SО3→ ; Al + Н2SО4→ ; и т.д.
Учитель: учитель все предложенные вами реакции вписываются в правило, что вещества металлической природы реагируют с веществами неметаллической природы. Получим некоторые из этих гидроксидов и подтвердим это утверждение реакциями с мерной кислотой.
Опыт 1. Получение гидроксида кальция и опыты с ним
Учитель получает гидроксид кальция взаимодействием хлорид кальция, приливая по каплям гидроксид натрия, обращая внимание при этом, что избыток щёлочи приводит к увеличению объёма осадка. Затем проводит реакцию полученного осадка с раствором серной кислоты. Учащиеся записывают уравнения.
Ученик:
СaCl2 + 2NaOH → Ca(ОН)2 ↓+ 2NaCl;
Ca(ОН)2 ↓+ Н2SО4 → CaSО4 + 2Н2О;
Ca(ОН)2 ↓+ NaOH ≠
Опыт 2. Получение гидроксида цинка и гидроксида алюминия и опыты с ними
Учитель получает гидроксид цинка взаимодействием хлорид цинка, приливая по каплям гидроксид натрия, обращая внимание на получаемый осадок, затем учитель целенаправленно приливает избыток щелочи.
Ученик: осадок растворился. Уравнение реакции получения гидроксида цинка:
ZnCl2 + 2NaOH → Zn(ОН)2 ↓+ 2NaCl;
Учитель: проведём реакцию получения гидроксида алюминия: учитель получает гидроксид алюминия взаимодействием хлорид алюминия, приливая по каплям гидроксид натрия, обращая внимание на получаемый осадок.
Ученик: предлагает приливать щёлочь осторожно, чтобы провести реакцию с серной кислотой, подтвердив их предположение. Составляет уравнение реакции получения гидроксида алюминия: AlCl3 + 3NaOH → Al(ОН)3 ↓+ 3NaCl
Учитель: во время из беседы приливает избыток щелочи, что опять приводит к растворению осадка гидроксида алюминия.
О чём говорит признак растворение осадка в других ранее изученных процессах?
Ученик: следовательно, происходит химическая реакция
Учитель: добавление какого вещества приводит к растворению осадка гидроксидов цинка и алюминия
Ученик: гидроксида натрия
Учитель: ранее мы не встречались с подобными реакциями при которых гидроксид металла реагирует с гидроксидом другого металла. Составим уравнение реакции, с получением комплексной соли (дать только понятие о комплексных солях):
Zn(ОН)2 ↓+ 2NaOH → Na2[Zn(ОН)4] (раствор)
Al(ОН)3 ↓+ NaOH → Na[Al(ОН)4] (раствор)
Учитель: постараемся получить эти гидроксиды аккуратно, по каплям добавляя гидроксид натрия. Мы ещё не подтвердили ранее изученное свойство: способность гидроксидов металлов реагировать с кислотами. Вероятно, что если гидроксиды цинка и алюминия способны реагировать со щелочами, то они не реагируют с кислотами?
Учитель проводит реакцию гидроксидов цинка и алюминия с серной кислотой.