Смекни!
smekni.com

Химический эксперимент по неорганической химии в системе проблемного обучения (стр. 13 из 16)

Ученик: осадки растворились.

Zn(ОН)2 ↓+ Н24 → ZnSО4 + 2Н2О;

2Al(ОН)3 ↓+ 3Н24 → Al2(SО4)3 + 6Н2О

Учитель: такая способность гидрокисидов цинка и алюминия взаимодействовать и с растворами кислот и с растворами щелочей, характерна и для их оксидов и алюминия и цинка – простых веществ. Это свойство – амфотерность. Записывают определение в тетрадь.

Учитель: проанализируем результаты других опытов:

Опыт 3. Получение гидроксида хрома (II)и (III) и изучение их свойств

Учитель получает гидроксид хрома (II) взаимодействием хлорида хрома (II), приливая по каплям гидроксид натрия, обращая внимание при этом, что избыток щёлочи приводит к увеличению объёма осадка. Затем проводит реакцию полученного осадка с раствором серной кислоты. Учащиеся записывают уравнения.

Ученик:

CrCl2 + 2NaOH → Cr(ОН)2 ↓+ 2NaCl;

Cr(ОН)2 ↓+ Н24 → CrSО4 + 2Н2О;

Cr(ОН)2 ↓+ NaOH ≠

Учитель получает гидроксид хрома (III) взаимодействием хлорида хрома (III) и по каплям приливаемого гидроксида натрия. Учитель обращает внимание на получаемый осадок, затем учитель пробует прилить избыток щелочи.

Ученик: осадок растворился. Уравнение реакции получения гидроксида хрома (III):

CrCl3 + 3NaOH → Cr(ОН)3 ↓+ 3NaCl;

Учитель: таким образом, гидроксид хрома (II) ведёт себя в растворе так же как гидроксиды щелочных и щелочноземельных металлов, т.е. обладает основными свойствами. А гидроксид хрома (III) проявляет амфотерные свойства.

Сr(ОН)3 ↓+ 3NaOH → Na3[Cr(ОН)6] (раствор)

Опыт 4. Получение гидроксида железа (II)и (III) и изучение их свойств

Учитель получает гидроксид железа (II) взаимодействием хлорид железа (II), приливая по каплям гидроксид натрия, обращая при этом внимание, что избыток щёлочи приводит к увеличению объёма осадка. Затем проводит реакцию полученного осадка с раствором серной кислоты. Учащиеся записывают уравнения.

Ученик:

FeCl2 + 2NaOH → Fe(ОН)2 ↓+ 2NaCl;

Fe(ОН)2 ↓+ Н24 → FeSО4 + 2Н2О;

Fe(ОН)2 ↓+ NaOH ≠

Учитель получает гидроксид железа (III) взаимодействием хлорид железа (III), приливая по каплям гидроксид натрия, обращая внимание на получаемый осадок, затем учитель целенаправленно приливает избыток щелочи.

Ученик: осадок не растворился. Вероятно и гидроксид железа (II) и гидроксид железа (III) проявляют основные свойства. Уравнение реакции получения гидроксида цинка:

FeCl3 + 3NaOH → Fe(ОН)3 ↓+ 3NaCl;

Учитель: проверим ваше предположение, несколько изменив условия реакции: прильём к свежеприготовленному гидроксиду железа (III) горячей концентрированной щелочи.

Ученик: осадок растворяется

Учитель: таким образом, гидроксид железа (III) так же амфотерен, но проявляет это свойство при более жёстких условиях.

Таким образом, к соединениям, проявляющим амфотерные свойства относятся: цинк, оксид цинка, гидроксид цинка, алюминий, оксид алюминия, гидроксид алюминия, оксид и гидроксид хрома (III), оксид и гидроксид железа (III). Кроме того, амфотерными являются оксид и гидроксид олова (II) и оксид и гидроксид свинца (II).

Каково место положения всех названных элементов в таблице и к каким элементам (s, p, d, f) они относятся. Оформим в виде таблицы:

Элемент Вид элемента Степеньокисления Амфотерность Вывод
Zn d-элемент Высшая + Амфотерными свойствами обладают p- и d-элементы. При непостоянных степенях окисления амфотерными являются соединения с промежуточной степенью окисления
Al p-элемент Постоянная +
Сr (III) d-элемент Промежуточная +
Fe (III) d-элемент Промежуточная +
Sn (II) p-элемент Промежуточная +
Pb (II) p-элемент Промежуточная +

Глава 4. Исследование эффективности методической системы проблемного подхода к обучению химии с применением школьного химического эксперимента

Апробация материалов экспериментов, созданных для использования в системе проблемного обучения, проводилась на базе МОУ Лицей информационных систем и технологий № 73 г. Пензы.

Исследование эффективности методической системы проблемного подхода к обучению химии, с применением школьного химического эксперимента, проводилось нами в урочной деятельности с учащимися 9 и 10 классов при изучении тем «Скорость химических реакций» и «Гидролиз солей», соответственно.

Апробацию нашего эксперимента начинали с формирования двух групп учащихся, с исходно одинаковым уровнем подготовки по химии.

Схема эксперимента приведена на рис. 2.

Рис. 2. Схема эксперимента

Конспект урока по теме «Гидролиз солей» для учащихся, обучавшихся с применением объяснительно-иллюстративной формы обучения представлен в приложении 4. После проведения урока по теме «Гидролиз солей» с применением объяснительно-иллюстративной формы обучения и без химического эксперимента у учащихся группы 1 и 2, нами было проведено тестирование (Приложение 5).

Анализ проведённого тестирования показал, что показатель «Степени обученности» в группе 1 и 2 на момент начала эксперимента составил 43 %, что соответствует второй (низкой) степени обученности (по В. П. Симонову) [41].

После проведения урока по теме «Гидролиз солей» с применением объяснительно-иллюстративной формы обучения и с химическим экспериментом у учащихся группы 1, нами вновь было проведено тестирование (Приложение 5).

Анализ проведённого тестирования показал, что показатель «Степени обученности» в группе 1 составил 60 %, что соответствует третьей (средней) степени обученности (по В. П. Симонову) [41].

Конспект урока по теме «Гидролиз солей» для учащихся группы 2 приведён в Главе 3, занятие № 6. Для того, чтобы эксперимент в системе проблемного обучения не приобрел развлекательный характер, учащимся с самого начала должна быть ясна цель проводимых опытов. Наш небольшой опыт показал, что учащиеся глубоко вникают в сущность проводимых опытов, задумываются над их результатами и пытаются ответить на вопросы только в том случае, если эксперимент поражает воображение и сильно влияет на эмоциональную сферу.

После проведения урока по теме «Гидролиз солей» в группе 2 с применением химического эксперимента и проблемного подхода к обучению, нами было проведено тестирование (Приложение 6).

Анализ проведённого тестирования показал, что показатель «Степени обученности» в группе 2 составил 94 %, что соответствует четвёртой (высокой) степени обученности (по В. П. Симонову) [41].

Таким образом, полученные в результате нашего исследования данные, показывают, что проблемное обучение при демонстрации опытов, способствует повышению эффективности обучения химии. Подобные опыты являются благодатной почвой для формирования диалектического и системного мышления учащихся. А включение таких опытов в процесс обучения позволяет учащимся овладевать логическими методами познания.

В дальнейшем у учащихся группы 1 и 2 нами было проведено анкетирование (Приложение 7) с целью исследования образовательного потенциала эксперимента – как средства позволяющего реализовать проблемный подход к обучению.

Анализ проведённого анкетирования показал, что все анкетируемые учащиеся проявили заинтересованность к проблемному моделированию ситуации при воспроизведении химических опытов. Большинство их опрашиваемых, при этом, отметили, что эта заинтересованность обусловлена предоставляемой возможностью логически и самостоятельно (в результате беседы) выявить и сформулировать правила и закономерностей химических явлений (процессов).

Все анкетируемые отметили, что они не испытывали сложности при восприятии нового материала, преподаваемого в системе проблемного обучения и хотели, чтобы подобные уроки чаще использовались при объяснении нового материала. Не исключено, что это связано с тем, что именно такая постановка эксперимента позволяет учащимся ощущать себя в роли исследователей-первооткрывателей.

Выводы

1. Проведён анализ психолого-педагогической, методической и химической литературы для определения современного состояния проблемы применения эксперимента в системе проблемного обучения.

2. Разработано содержание двадцати опытов по общей и неорганической химии для использования в системе проблемного обучения.

3. Разработаны методические рекомендации к опытам для учителя, использующего в своей работе проблемный подход к обучению.

4. Для исследования эффективности проблемного обучения при демонстрации опытов, в группах учащихся применяли метод педагогического тестирования учебных достижений по химии, с последующей его оценкой с помощью критерия «Степень обученности» (по В. П. Симонову).

5. «Степень обученности» в группах учащихся‚ обучавшихся по объяснительно-иллюстративной системе без применения химического эксперимента (группа 1 и 2), по объяснительно-иллюстративной системе с применением химического эксперимента (группа 1), в системе проблемного обучения при демонстрации химического эксперимента составила 43 % (низкий уровень), 60 % (средний уровень) и 94 % (высокий уровень), соответственно.

6. Для исследования образовательного потенциала эксперимента, как средства позволяющего реализовать проблемный подход к обучению, в группах учащихся применяли метод выборочного‚ группового‚ очного анкетирования.

7. Апробация материалов экспериментов проведена на уроках у учащихся 9 и 10 классов МОУ Лицей информационных систем и технологий № 73 г. Пензы.