Смекни!
smekni.com

Химия в поисках альтернативных источников энергии (стр. 3 из 5)

Низкая температура сгорания генераторного газа, получаемого при воздушном дутье, определяется наличием в нём значительного количества (около 50%) балластного газа (азота), поступающего из воздуха. Для повышения калорийности газа до 15-20 МДж/нм3 процесс следует вести на кислородном дутье, что в условиях промышленной эксплуатации энергетических газогенераторов малой мощности – мало вероятно инженерной точки зрения.

Существует и разрабатывается ряд технологических процессов получения из растительной биомассы жидкого топлива как непосредственно, так из газа, как промежуточного продукта. При этом используется скоростной нагрев мелкодисперсного топлива (флеш-пиролиз), а также ожижение под действием различных катализаторов. Однако, по мнению авторов, в ближайшие годы данные технологии могут найти применение только для получения моторного топлива. Целесообразность их реализации в «большой» энергетике внутри существующих тепловых систем проблематична, так как указанные технологии практически могут реализовываться только на крупных заводах [7].

§3. Биодизель

Альтернативой дизельным топливам на основе сырой нефти служит биодизельное топливо. Биодизелем, называют топливо, полученное химической реакцией между растительными маслами либо животными жирами и спиртами (метиловым, этиловым или изопропиловым спиртами) в присутствии катализатора (щёлочь или кислота). С химической точки зрения биодизель – это моноалкиловый эфир. С помощью процесса, называющегося этерификацией, масла и жиры вступают в реакцию с метиловым спиртом и гидроксидом натрия, который служит катализатором, в результате чего образуются жирные кислоты, а также побочные продукты: глицерин, глицериновые основания, растворимый поташ и мыло [Приложение 1].

Хотя энергетическая ценность биодизеля приблизительно равна энергетической ценности обычного дизельного горючего (118000 БТЕ (Британские тепловые единицы) против 130500 БТЕ по эквиваленту крутящей силы и количеству лошадиных сил), однако биодизель является гораздо более чистым топливом и более безопасным при хранении и использовании по сравнению с обычным дизельным горючим. В результате опытов, проведенных Исследовательским институтом Колорадо по горючим и двигателям, было установлено, что при использовании смеси горючего, содержащей 20% биодизеля, наблюдается снижение выхлопных газов на 14%, углеводородов – на 13% и окиси углерода – на более чем 7% [4].

Биодизель (включая смесь В20) в настоящее время признан Агентством по охране окружающей среды и Министерством Энергетики (США) в качестве альтернативного горючего, соответствующего требованиям по защите атмосферного воздуха и окружающей среды. К тому же, биодизель обладает рядом существенных преимуществ.

· не токсичен (его токсичность составляет лишь 10% от токсичности поваренной соли);

· разлагается в естественных условиях (приблизительно за то же время, что и сахар);

· при попадании в воду не причиняет вреда растениям и животным;

· практически не содержит серы и канцерогенного бензола;

· его источником являются возобновляемые ресурсы, не способствующие накоплению газов, вызывающих парниковый эффект, что характерно для горючего, полученного на основе нефти.

Прямые преимущества, получаемые при использовании биодизеля в виде 20% смеси с обычным дизельным топливом, включают в себя:

· увеличение сетанового числа и смазывающей способности, что продлевает жизнь двигателя;

· значительное снижение вредных выбросов (включая СО, СО2, SO2, мелкие частицы и летучие органические соединения);

· способствование очистке инжекторов, топливных насосов и каналов подачи горючего.

Эти преимущества легко доступны и не требуют затрат на модификацию двигателей или изменения в инфраструктурах. К тому же, добавление катализатора может снизить выбросы оксидов азота, что придает В20 гибкость в отношении соблюдения требований к чистоте атмосферного воздуха.

Наконец, биодизель дает возможность владельцам и управляющим автопарков, использующим дизельное топливо (включая подвижной состав и автомобили, исключенные из него, а также морские суда, оснащенные дизельными двигателями), соблюдать без особых усилий требования к чистоте воздуха, не затрачивая значительные средства, как в случае с другими альтернативными видами топлива [6].

В настоящее время в странах ЕС используют Aquazole, представляющее собой смесь биодизельного топлива и воды, под маркой Elf предлагается потребителям с 2005 года. Из воды и биодизельного топлива с помощью присадки получается однородная смесь, которая выделяет на 80% меньше сажи и на 30% оксидов азота.

На сегодняшний день самые конкурентоспособные результаты среди различных альтернативных видов топлива показал биодизель [5].

§4. Биогаз

Метановое брожение или биометаногенез - процесс превращения органического вещества в анаэробных условиях под действием бактериальной флоры. Биогаз, получается входе в биометаногенеза, представляет собой смесь газов; кислорода, азота, водорода, углекислого газа, из которых 50-80% составляет метан.

Согласно современным представлениям, анаэробное превращение практически любой биомассы в метан проходит через четыре последовательных этапа: фаза гидролиза (расщепления), сложных биополимерных молекул (белков, липидов, полисахаридов) на более простые, например, мономеры, аминокислоты, углеводы и другие; фаза ферментации образовавшихся мономеров до ещё более простых веществ- низших кислот и спиртов, аммиака и сероводорода; ацетогенная фаза (образование Н2, СО2, формиата и ацетата) и непосредственно метаногенная фаза, которая приводит к конечному продукту расщепления- метану [17].

Исследователи, кроме четырёх этапов конверсии биомассы в метан, отдельно выделяют две стадии. У разных авторов они имеют разные названия: “неметаногенная” и “метаногенная”, “кислотная” и “слабощелочная” и т.д. Первая стадия (кислотная) связана с образованием летучих жирных кислот как основных промежуточных продуктов разложения органических веществ до метана, вторая стадия (слабощелочная или метаногенная)- с физико-химической характеристикой среды и образованием метана.

Технологически метановое брожение делят на этап созревания метанового биоценоза и этап ферментации (непрерывный и периодический).

В течении первого этапа развиваются группы микроорганизмов, участвующие в разложении исходных сложных субстратов и продуктов их распада. В результате физиологической деятельности этих микроорганизмов создаются оптимальные условия для активного метангенерирования (четвёртая фаза). По достижении этих условий ферментация переводится на непрерывный или периодической режим.

Метановое брожение может протекать при температуре 10-60°С. Термофильное метановое брожение (45-65°С) в 2-3 раза интенсивнее мезофильного брожения (25-35°С), причём изменение температуры влияет лишь на скорость процесса, а не на качественный состав образующихся продуктов. [Приложение 2].

Метанобразующие бактерии или метаногены являются анаэробами, чувствительными к кислороду. Группа метанобразующих организмов насчитывает на сегодняшний день около 50 видов, по температурному режиму подразделяющихся на психрофилов (существуют при температуре 4-25°С), мезофилов (30-35°С) и термофилов (50-70°С). Для обеспечения нормальной жизнедеятельности метаногенов необходимо:

1) постоянство температуры и давления;

2) строгий анаэробиоз;

3) отсутствие света;

4) нейтральная или слабощелочная среда.

Выделение в окружающую среду горючих и токсичных веществ, входящих в состав биогаза, оказывает отрицательное воздействие на природу, является причиной взрывов и пожаров. На рекультивированных землях газ вытесняет из корневой системы воздух, что отрицательно сказывается на их росте.

Мировой опыт свидетельствует, что извлечение биогаза из толщи твёрдых бытовых отходов (ТБО) и его использование экологически необходимо (в том числе, с точки зрения безопасности).

В силу достаточно низкого содержания в ТБО органических веществ и при их малой влажности – главный показатель, влияющий на образование газа, получение из них биогаза неэффективно без использования дополнительных компонентов. В качестве такой добавки можно использовать осадок сточных вод (ОСВ). В соответствии с требованиями СНиП 2.04.03.-85 соотношение компонентов смеси ТБО и ОСВ должно быть стабильным и составлять 2:1 по массе. Иловые осадки, имеющие повышенную влажность - 98%, как бытовой мусор, имеющий низкую влажность – 45% , компенсируются и утилизируются сепаратно кратно неэффективно. Оптимальная влажность органического субстрата, которая обеспечивает интенсивные анаэробные процессы, составляет 60-70%. В тих условиях происходит эффективное биотермическое обезвоживание ОСВ и ТБО, а так же активное разложение органического субстрата с выделением биогаза за счёт взаимодействия компонентов, способствующих интенсификации процесса; в частности, достигается оптимальное соотношение углерода и азота, повышается пористость иловых осадков, уменьшается относительное содержание в смеси инертных включений. Совместная переработка ТБО и ОСВ позволяет сократить требуемые площади примерно на 20% и количество обслуживаемого персонала. При этом сокращаются и энергетические затраты, поскольку обеззараживание осадка достигается в процессе компостирования без применения каких-либо дополнительных устройств. Компостирование смеси ОСВ и ТБО позволяет вести биотермические процессы при температуре 50-70°С, что обеспечивает эффективное обезвреживание всей массы. Процесс биотермического разложения органических веществ, по данным исследований, приводит к гибели яиц гельминтов, личинок мух и резкому сокращению патогенных микроорганизмов.

В виду непрерывного процесса образования свалочных отложений и постоянной эмиссии биогаза, этот источник можно отнести к возобновляющимся.