Министерство Образования Украины
Харьковский государственный технический университетстроительства и архитектуры
Контрольная работа
Химия воды и микробиология
Выполнила студентка
заочного факультета
Хвостова Л.В.
группы ВВЗ-33
зачетная книжка № 2007-018
г. Харьков 2008
1. Охарактеризуйте особенности водородной связи в жидкой воде, льду и водяном пару
Каждая молекула воды может образовать четыре водородных связи: две возникают при взаимодействии неподеленных электронных пар атома кислорода с атомами водорода соседних молекул воды и две дают атомы водорода, взаимодействующие с атомами кислорода двух других молекул воды. Водородная связь возникает в результате внедрения очень малого по размерам положительно поляризованного атома водорода одной молекулы в электронную оболочку отрицательно поляризованного атома кислорода другой молекулы воды. Длинна водородной связи О…Н изменяется в пределах от 0,14 до 0,2 нм. Энергия ее составляет 17-33 кДж/моль. Существованием водородных связей объясняется аномально высокая температура плавления воды по сравнению с водородными соединениями аналогов кислорода (H2S, H2Se, H2Te). Водородные связи и донорно-акцепторные взаимодействия способствуют возникновению высокой упорядоченности внутренней структуры в жидкой воде. Водородные связи обусловливают высокое внутреннее давление, которое способствует появлению у воды некоторых особых свойств.
Рассмотрим структуру воды в различных агрегатных состояниях.
Лед обладает электропроводностью около 10-9 Ом-1 *см-1 при температуре – 100С. Электропроводность льда Бьеррум объясняет существованием ионизационных дефектов в кристалле льда. Ионы могут образоваться при переходе протона тот одной молекулы воды к другой по схеме 2Н2О↔Н3О++ОН-.
Водяной пар состоит главным образом из одиночных молекул воды, но в нем встречаются и ассоциированные молекулы (ди- и тримеры).
2. В чем суть конструктивного обмена или анаболизма?
Питательные вещества, которые поглощаются клетками в результате сложных биохимических реакций, превращаются в специфические клеточные компоненты. Биохимические процессы, которые происходят при этом, составляют суть конструктивного обмена или анаболизма. Конструктивные процессы идут с поглощением энергии.
Центральное место в энергетическом обмене занимает АТФ – аденозинтрифосфорная кислота. Макроэргические связи в молекуле АТФ очень нестойкие. Гидролиз таких связей приводит к освобождению большого количества энергии:
АТФ+Н2О→АДФ+Н3РО4, ∆Н=-30,56кДж
Запас АТФ в клетках всё время восстанавливается за счёт реакции присоединения остатка ортофосфорной кислоты к молекуле АДФ – аденозиндифосфорная кислота:
АДФ+Н3РО4→АТФ+Н2О
Этот процесс проходит с поглощением энергии, для чего используется энергия света или энергия химических реакций.
3. Какие факторы определяют стойкость дисперсных систем?
Дисперсные системы – это особая форма организации веществ; они широко распространены в природе и имеют важное практическое значение.
Дисперсными системами называют гетерогенные системы из двух или больше фаз с сильно развитой поверхностью раздела между ними.
Отличают агрегативную и кинетическую стойкость дисперсных систем. Агрегативная стойкость – это способность дисперсных систем сохранять свою степень дисперсности, способность противостояния слипания, укрупнения частичек дисперсной фазы. Кинетическая стойкость связана с способностью частичек дисперсной фазы до хаотичного теплового броунинского движения. Чем меньше размер частичек, чем выше температура и меньшая вязкость дисперсной среды, тем сильней броунинское движение, тем выше кинетическая стойкость системы. Грубодисперсные системы агрегативно и кинетично нестойкие.
4. Какие организмы относятся к водным микроорганизмам?
Классифицируйте водные микроорганизмы.
Количество микроорганизмов в водной среде определяется такими факторами, как наличие органических веществ, содержание растворенного кислорода, температура, характер водоема и т.п. В подземных водах и водах атмосферных осадков содержится незначительное количество микроорганизмов.
В поверхностных водоемах численность микроорганизмов определяется степенью загрязнения воды органическими соединениями. В воде рек она может колебаться от нескольких тысяч до миллиона клеток и более в 1 мл. Донный ил, содержащий большее количество питательных веществ в виде органических остатков, является средой обитания для многих микроорганизмов. В водоемах с замедленным стоком (водохранилищах), озерах количество микроорганизмов уменьшается от береговой линии и с возрастанием глубины. Видовой состав микроорганизмов, живущих в поверхностных водоемах, крайне разнообразен.
Водные организмы, населяющие дно водоема и донные отложения, называются бентосом. К бентосным формам микроорганизмов относится огромное количество бактерий, водоросли, простейшие, грибы и др. Особенно много бактерий, осуществляющих превращения биогенных элементов, находится в верхнем слое донных отложений. Они могут образовывать на поверхности донных отложений пленку толщиной в несколько миллиметров. Широко распространены в донных отложениях простейшие, коловратки. Максимальное количество микроорганизмов в донных отложениях наблюдается летом и осенью. На больших глубинах микробентосные формы широко представлены, в основном, бактериями-минерализаторами. Процессы разложения органических веществ с наибольшей напряженностью идут именно в поверхностных слоях донных отложений.
5. Способы питания микроорганизмов
Для осуществления процессов роста и размножения, т.е. жизнедеятельности, необходимы питательные вещества с окружающей среды.
Поступление питательных веществ в бактериальную клетку происходит без энергетических затрат, за счет пассивной диффузии или облегченной диффузии (с помощью ферментоподобных белков – пермеаз).
Способы питания микроорганизмов очень разнообразны. Нужно отличать три основных способа питания: голофитное, сапрозойное и голозойное.
Голофитное питание осуществляется по типу фотосинтеза растений. Среди микроорганизмов этот способ присущ водорослям, окрашенным формам жгутиковых и некоторым бактериям.
Голозойный способ питания обуславливает развитие у микроорганизмов специальных органоидов для переваривания еды, а в некоторых – и для её захвата. Например, неокрашенные жгутиковые и ресничные у инфузории имеют ротовую пустоту, к которой еда подгоняется соответственно жгутиками и ресничками.
При сапрозойном способе питания полезные вещества попадают в клетку через всю её поверхность, поскольку такие микроорганизмы не имеют специальных органов для захвата еды. Этот способ питания присущ бактериям, микроскопическим грибам, дрожжам.
Необходимое условие – приемная форма питательных веществ, в которой они могут усваиваться микроорганизмом.
6. Изложить принципы стабилизационной обработки воды. Какие химические соединения целесообразно применять для стабилизационной обработки воды замкнутых технологических циклов?
Воды, в которых соблюдается основное карбонатное равновесие, называются стабильными. Они не имеют своего состава при контакте с карбонатами, бетоном, карбонатными защитными пленками. Воды, содержащие избыток свободной угольной кислоты над равновесной, называются агрессивными. При контакте с бетоном или карбонатными пленками такие воды называют растворение карбонатных составляющих. Агрессивное действие этих вод выражается в растворении карбоната кальция и извести по уравнениям:
CaCO3+CO2+H2O↔Ca(HCO3)2
Ca(OH)2+2CO2↔Ca(HCO3)2
Стабильность воды оценивают по методу Ланжелье, который основан на том, что данному значению рН соответствует определенное количество свободной угольной кислоты, находящейся в равновесии с другими ее формами. Величина рН, соответствующая равновесию, называется "рН равновесного насыщения воды карбонатом кальция" и обозначается pHs вычисляют по формуле
pHs=pK2-pПРCaCO3-lg[Ca2+]-lgЩо+2,5√I+7,6,
где pK2 – отрицательный логарифм константы 2-й ступени диссоциации угольной кислоты; pПРCaCO3 – отрицательный логарифм произведения растворимости; [Ca2+] – концентрация ионов Ca2+ , мг/л; Що – общая щелочность, мг-экв/л; I – ионная сила.
Стабилизация воды, содержащей агрессивную угольную кислоту, производится веществами, вызывающими повышение щелочности воды. В качестве реагентов применяются известь, гидроксид и карбонат натрия. Реакции, протекающие при этом, описываются уравнениями:
NaOH+CO2=NaHCO3 ; Ca(OH)2+2CO2=Ca(HCO3)2
Na2CO3+CO2+H2O=2NaHCO3
Агрессивную воду можно сделать стабильной также путем фильтрования ее через слой известняка, мрамора, природного и полуобожженного доломита ("магномассы"). При фильтровании воды через слой магномассы дополнительно проходит реакция взаимодействия оксида магния с угольной кислотой:
MgO+2CO2+H2O=Mg(HCO3)2
Обработка нестабильных вод направлена на снижение щелочности и заключается в обработке их кислотами (соляной, серной) или в насыщении диоксидом углерода (рекарбонизация). Так, например,
NaHCO3+HCl=NaCl+H2O+CO2
На некоторых очистных сооружениях используются мраморно-песчаные фильтры, которые позволяют получить не только осветленную, но и стабильную воду.
7. Какие процессы определяют скорость ионного обмена, зависит ли скорость от концентрации примесей в воде?
Скорость обмена зависит от размена иона, величины его заряда и способности к гидратации. Она увеличивается с повышением заряда иона и уменьшением степени гидратации. Рабочая обменная емкость катионов по иону Na+ примерно в два раза меньше, чем по ионам Ca2+ или Mg2+. Аниониты имеют большую избирательность к сульфат-иону по сравнению с хлорид-ионом. Рабочая обменная емкость по сульфат-иону на 40 – 50% выше, чем по хлорид-иону. На рабочую обменную емкость влияет скорость фильтрации через ионитовый фильтр. При значительной скорости фильтрования воды рабочая обменная емкость заметно уменьшается. Эта зависимость рабочей обменной емкости от скорости фильтрования является общей для всех видов ионитов. Обычно рабочая обменная емкость составляет около 60% от полной, но в зависимости от режима фильтрования может изменяться. Высота слоя, при которой происходит снижение жесткости исходной воды до заданной величины, называется высотой защитного слоя ионита. На рабочую обменную емкость ионитов влияет и их фракционный состав. Чем меньше размер зерен, тем выше скорость обмена ионов. Размер частиц основной рабочей фракции большинства марок ионитов составляет 0,5мм.