Второй путь заключается в моделировании биокатализаторов. В настоящее время за счет искусственного отбора структур удалось построить модели многих ферментов характеризующихся высокой активностью и селективностью, иногда' почти такой же, как и у оригиналов, или с большей простотой строения.
Правда, пока все же полученные модели не в состоянии заменить природные биокатализаторы живых систем. На данном этапе развития химических знании проблема эта решается чрезвычайно сложно. Фермент выделяется из живой системы, определяется его структура, он вводится в реакцию для осуществления каталитических функций. Но работает непродолжительное время и быстро разрушается, поскольку является выделенным из целого, из клетки. Цельная клетка со всем ее ферментным аппаратом — более важный объект, чем одна, выделенная из нее деталь.
Третий путь к освоению механизмов лаборатории живей природы связывается с достижениями химии иммобилизованных систем. Сущность иммобилизации состоит в закреплении выделенных из живого организма ферментов на твердой поверхности путем адсорбции, которая и превращает их в гетерогенный катализатор и обеспечивает его стабильность и непрерывное действие.
Четвертый путь в развитии исследований, ориентированных на применение принципов биокатализа в химии и химической технологии, характеризуется постановкой самой широкой задачи — изучением и освоением всего каталитического опыта живой природы, в том числе и формирования фермента, клетки и даже организма. Это ступень, на которой основы эволюционной химии как действенной науки с ее рабочими функциями. Ученые утверждают, что это движение химической науки к принципиально новой химической технологии с перспективой создания аналогов живых систем. Решение названной задачи займет важнейшее место в создании химии будущего.
Заключение
Современная химия представлена множеством различных направлений развития знаний о природе вещества и способах его преобразования. В то же время химия является не просто суммой знаний о веществах, а высоко упорядоченной, постоянно развивающейся системой знаний, имеющей свое место в ряду других естественных наук.
Химия изучает качественное многообразие материальных носителей химических явлений, химической формы движения материи. Хотя структурно она пересекается в определенных областях и с физикой, и с биологией, и с другими естественными науками, но сохраняет при этом свою специфику.
Одним из наиболее существенных объективных оснований выделения химии в качестве самостоятельной естественнонаучной дисциплины является признание специфичности химизма взаимоотношения веществ, проявляющегося, прежде всего, в комплексе сил и различных типов взаимодействий, обусловливающих существование двух- и многоатомных соединений. Этот комплекс принято характеризовать как химическую связь, возникающую либо разрывающуюся в ходе взаимодействия частиц атомного уровня организации материи. Для возникновения химической связи характерно значительное перераспределение электронной плотности по сравнению с простым положением электронной плотности несвязанных атомов или атомных фрагментов, сближенных на расстояние связи. Эта особенность наиболее точно отделяет химическую связь от разного рода проявлений межмолекулярных взаимодействий.
Происходящее ныне неуклонное возрастание в рамках естествознания роли химии как науки сопровождается быстрым развитием фундаментальных, комплексных и прикладных исследований, ускоренной разработкой новых материалов с заданными свойствами и новых процессов в области технологии производства и переработки веществ.
Литература
1. Большой энциклопедический словарь. Химия. М., 2001.
2. Грушевицкая T.T., Садохин А.П. Концепции современного естествознания. М., 1998.
3. Концепции современного естествознания. Под. ред. В.Н. Лавриненко, В.П. Ратникова. М., 1997.
4. Кузнецов В.И. Общая химия. Тенденции развития. М., 1989.
5. Кузнецов В.И., Идлис ГМ., Гутина В.Н. Естествознание. М., 1996.
6. Молин Ю.Н. О роли физики в химических исследования. Методологические и философские проблемы химии. Новосибирск, 1981.
7. Химия//Химический энциклопедический словарь. М., 1983.