1) нитросоединения – органические соединения, содержащие одну или несколько групп C-NO2 (тротил). Наибольшее значение имеют полинитропроизводные ароматических соединений. Значительная часть нитросоединений алифатических углеводородов также является ВВ, но лишь немногие из них имеют практическое значение;
2) нитроамины – органические соединения, содержащие группы N-NO2 (гексоген, тетрил);
3) эфиры азотной кислоты – органические соединения, содержащие группы О-NO2 (тэн) В качестве ВВ применяются азотнокислые эфиры спиртов и углеводов;
4) соли азотной кислоты. Наибольшее применение имеет нитрат аммония (NH4NO3), а также нитраты органических оснований (мочевины, метиламина и др.).
Вторую группу составляют взрывчатые смеси, содержащие и не содержащие ВВ.
К важнейшим классам взрывчатых смесей, содержащим взрывчатые компоненты, относятся:
1) аммониты или аммонийноселитренные ВВ, состоящие из смеси аммонийной селитры с нитросоединениями;
2) сплавы и смеси нитросоединений;
3) нитроглицериновые ВВ (динамиты);
4) хлоратные и перхлоратные ВВ – смеси хлорноватой или хлорной кислот с нитросоединениями и др.
В состав смесей, состоящих из невзрывчатых компонентов, входят горючие вещества и соединения, содержащие значительное количество кислорода или другого окислителя. Реакция взрыва в этом случаи заключается в окислении элементов, входящих в горючие вещества, кислородом, содержащимся в окислителях. Взрывчатые смеси из невзрывчатых компонентов могут быть разбиты на следующие классы:
1) дымные пороха – смеси селитры и угля;
2) оксиликвиты – смеси жидкого кислорода с горючими веществами;
3) смеси концентрированной азотной кислоты или другого жидкого окислителя с горючими веществами.
Из взрывчатых смесей наибольшее значение имеют аммонийноселитренные ВВ.
Артиллерия предъявляет очень жесткие требования к бризантным ВВ. Они должны обладать большой мощностью, быть безопасными в обращении, иметь достаточную чувствительность к начальному импульсу, быть стойкими при хранении. Кроме всего перечисленного, бризантное ВВ, принятое на вооружение, должно быть обеспечено сырьевой базой и метод производства его должен быть достаточно прост и безопасен.
Применяемые в настоящее время взрывчатые вещества далеко не в полной мере удовлетворяют перечисленным требованиям и поэтому изыскание новых мощных взрывчатых веществ, обладающих указанными выше свойствами, является важной задачей ученых и инженеров, работающих в этой области. Одновременно актуальна и проблема усовершенствования технологии производства ВВ с целью снижения опасности их изготовления и повышения производительности труда, и как следствие – снижение себестоимости продукта.
Занятие 2
Тема занятия: Тротил. Тэн.
Цель занятия: Дать учащимся общее представление о тротиле, о тэне, познакомить со свойствами и методами получения тротила, тэна.
План занятия а:
1. Свойства тротила и тэна.
2. Получение тротила и тэна.
3. Применение тротила и тэна.
Ход занятия:
1. Тротил по внешнему виду представляет собой желтое вещество. Температура плавления очищенного тротила 80,6°С, при наличии примесей температура плавления снижается до 75–77°С. Примеси образуют с тротилом многокомпонентные эвтектические сплавы, имеющие маслообразный вид, вследствие чего их называют тротиловым маслом.
Плотность монокристалла тротила 1,663 г./см. Гигроскопичность около 0,05%, растворимость в воде низкая – 0,15% при 100°С, что является благоприятным свойством.
Тротил токсичен, предельно допустимая концентрация 0,001 мг/л, он поражает дыхательные пути, пищеварительный тракт. При длительном воздействии вызывает слабость, головокружение, дерматиты кожи, гепатит,
Тэн представляет собой белое кристаллическое вещество с температурой плавления 141–142°С и плотностью 1,77 г./см, плохо прессуется. Прессованием можно достичь плотности 1,6 г/см. Размер частиц 10–830 мкм.
Тэн не гигроскопичен, растворимость его в воде при 19°С 0,01%, а при 100°С – 0,035%. Тэн химически стоек, более чувствителен к механическим воздействиям, чем гексоген и октоген. Температура вспышки 205–225°С.
Тэн – токсическое вещество, вызывает раздражение верхних дыхательных путей, покраснение слизистых оболочек и кожи; при попадании в легкие вызывает расширение кровеносных сосудов.
2. Тротил получают нитрацией толуола смесью азотной и серной кислот.
Тэн – сложный эфир азотной кислоты и четырехатомного спирта – пентаэритрита С(СН2ОН)4.
С(СН2ОН)4 + 4HNО3 → С(СН2ONО2)4 + 4Н2О
3. Тротил в чистом виде или смеси с гексогеном (смеси ТГ, состав В) или тэном (пентолит) широко применяется в виде литых и прессованных шашек в качестве промежуточных детонаторов, кумулятивных зарядов для дробления негабаритных кусков породы, зарядов для сейсморазведки.
Чистый тэн используется для снаряжение средств инициирования и детонирующих шнуров, для прессованных дополнительных детонаторов, а также в эластичных ВВ.
Занятие 3
Тема занятия: Гексоген. Октоген.
Цель занятия: Дать учащимся общее представление о гексогене и октогене, познакомить со свойствами и методами получения гексогена и октогена.
План занятия:
1. Свойства гексогена и октогена.
2. Получение гексогена и октогена.
3. Применение гексогена и октогена.
Ход занятия:
1. Гексоген по внешнему виду представляет собой белое вещество с плотностью монокристалла 1,816 г/см3. При прессовании достигает плотность 1,73 г/см3. Температура плавления 204,5–205°С. Гексоген практически не гигроскопичен. Он весьма ядовит, предельно допустимая концентрация 0,001 мг/л; поражает центральную нервную систему, главным образом головной мозг, вызывает нарушения кровообращения и малокровие.
Гексоген характеризуется высокой чувствительностью к механическим воздействиям. С целью снижения чувствительности гексоген флегматизируют воскоподобными веществами.
Температура вспышки 220–230°С. На открытом воздухе он горит ярким белым пламенем без остатка, при быстром нагревании разлагается со взрывом.
Температуру 185°С выдерживает в течение 2,5 ч.
Октоген впервые был обнаружен как примесь к гексогену. Долгое время он интересовал исследователей исключительно как вещество, сопровождающее гексоген. Однако в последние годы его начали изучать как самостоятельное ВВ, так как октоген, имея все положительные качества гексогена, выгодно отличается от него более высокой термостойкостью, большей плотностью и соответственно лучшими взрывчатыми характеристиками.
Октоген – белое кристаллическое высокоплавкое вещество с плотностью монокристалла 1,906 г/см3. Температура плавления 278,5–280°С. Октоген не гигроскопичен, в воде при 15–20°С растворяется около 0,003%.
По токсичности октоген аналогичен гексогену.
Октоген, как и гексоген характеризуется высокой чувствительностью к механическим воздействиям.
Температура вспышки октогена 291°С. Октоген отличается сравнительно высокой термостойкостью: температуру 200°С выдерживает 8 ч 30 мин, 205°С – 4 ч 30 мин, 220°С - 2 ч.
2. Гексоген получают нитрацией уротропина азотной кислотой. В общем виде реакцию можно записать следующим образом:
Однако малый выход гексогена и большой расход HNO3 свидетельствует о том, что эта реакция значительно сложнее и сопровождается побочными продуктами.
Октоген получают нитролизом уротропина азотной кислотой в среде уксусного ангидрида и нитрата аммония.
2C6H12N4 + 8HNO3 + 4NH4NO3 + 12 (СН3СО)2O →3C4H8(NNО2)4 + 24CH3COOH
3. Гексоген применяется для снаряжения зарядов малого калибра, кумулятивных зарядов, в детонаторах, в капсюлях-детонаторах. В смеси с алюминиевой пудрой или с тротилом его используют для снаряжения различных боеприпасов.
Гексоген используют также в так называемых пластичных ВВ или во взрывчатых замазках. Смеси из гексогена и связывающего материала являются мягкими, пластичными и немного клейкими. Они применяются для подрывных целей, например, с их помощью можно резать металл, мостовые фермы, ткани и т.п.
Октоген как термостойкое ВВ используется в зарядах для перфорации глубоких нефтяных скважин, в термостойких капсюлях-детонаторах, детонирующих шнурах. В США его применяют при температуре до 210°С, в основном при прострелочно-взрывных работах, а также при дроблении горячих слитков, разгрузке и ремонте доменных печей и т.п.
Заключение
На основе дипломной работы можно сделать следующие выводы:
1. Изучен широкий ряд литературных источников о технологиях штатных взрывчатых веществ и о их свойствах.
2. На основе полученного материала разработаны факультативные занятия для учеников старших классов средней школы.
3. Использование данного материала при проведении факультативных занятий позволило расширить знания учащихся, совершенствовать их научное мировоззрение, выработать у школьников представление о химических технологиях взрывчатых веществ и опасности, при обращении с ними.
Литература
1. Андреев К.К. Взрыв и взрывчатые вещества. – М.: Недра, 1956. – 119 с.
2. Андреев К.К. Термическое разложение и горение взрывчатых веществ. – М.: Наука, 1966. – 346 с.
3. Андреев К.К., Горбунов В.В. Об устойчивости нормального горения порошкообразных взрывчатых веществ. – В сб.: «теория взрывчатых веществ. М.: Высшая школа, 1967. – С. 135–149.
4. Бенсон С. Основы химической кинетике. - М.: Мир, 1964. – 350 с.
5. Взрывчатые вещества, пиротехника, средства инициирования в послевоенный период. Научное издание. Издательство «Гуманистика», М-СПб, 2001.
6. Горст А.И. Химия и технология нитросоединений. – М.: Оборонгиз, 1940. – С. 341.