Смекни!
smekni.com

Химия металлоорганических соединений (стр. 2 из 4)

Бутиллитий при нагревании и повышенном давлении присоединяется к этилену с образованием литийалкилов (в которых литий сохраняет высокую реакционную способность):

Изопропиллитий реагирует с этиленом уже при -60°С, образуя 1-литий-З-метилбутан:

К 1,3-бутадиену литийалкилы присоединяются в положения 1,4 и 1,2. Повышение температуры и давления благоприятствует 1,4- присоединению:

.

Практическое значение этой реакции заключается в том, что она привела к промышленному методу стереорегулярной полимеризации 1,3-бутадиена в синтетический каучук.

Взаимодействие алкиллития с карбонильными соединениями (альдегидами, кетонами), как и в случае натрий-, магний-, цинк-, алюминийорганических соединений, приводит к спиртам. Использование в этой реакции литийорганических соединений оправдано в тех случаях, когда взаимодействие с альдегидами и кетонами более доступных магнийорганических соединений не приводит к цели.

Так, диизопропилкетон и изопропиллитий образуют триизопропилкарбинол. Реакция протекает через стадию нестойкого комплекса, который перегруппировывается в литиевый алкоголят, гидролизуемый водой в триизопропил карбинол:

Магнийорганическим синтезом подобный спирт разветвленного строения получить нельзя вследствие восстановления исходного кетона магнийорганическим соединением.

1.2 Органические соединения натрия

Натрийорганические соединения сохраняют ряд общих черт с органическими соединениями лития, однако их специфика заключается: а) в преимущественной роли реакции металлирования при их синтезе, открытой П. П. Шорыгиным (1910 г.) и детально разработанной на примере получения органических соединений натрия; б) в большей реакционной способности, затрудняющей их синтетическое использование. Практическое значение органических соединений натрия связано с инициируемой ими реакцией полимеризации 1,3-бутадиена.

Способы получения.Металлирование (замена водорода натрием в органических соединениях). Металлирующими агентами могут быть натриевые производные предельных углеводородов, амид натрия в жидком аммиаке и металлический натрий. Металлированию подвергаются преимущественно следующие группы органических соединений: ароматические углеводороды, жирноароматические соединения, ацетиленовые углеводороды.

Непосредственным действием металлического натрия на ароматические соединения (бензол) нельзя заменить в них водород металлом. Реакция сводится к действию натрийалкила на металлируемый ароматический углеводород при 0—25°С:

Натрийорганические соединения, как и литийорганические соединения, обычно не выделяются в свободном виде и используются в растворах для дальнейших синтезов:

Ацетилен и монозамещенные ацетиленовые углеводороды металируются натрием или амидом натрия в жидком аммиаке. Действие амида натрия на винилацетилен приводит к винилацетилениду натрия, представляющему собой белые кристаллы, самовоспламеняющиеся на воздухе.

Металлический натрий присоединяется к диеновым углеводородам — 1,3-бутадиену в положения 1,4 и 1,2, образуя соответственно 1,4-динатрий-2-бутен и 3,4-динатрий-1-бутен (которые инициируют полимеризацию бутадиена). Металлический натрий может быть заменен алкилнатрием, например амилнатрием.

Химические свойства.В реакции металлирования углеводороды проявляют свойства слабых кислот. По существу реакция металлирования является реакцией вытеснения слабой кислотой еще более слабой кислоты из ее солей.

Порядок вытеснения из натриевых производных углеводородов позволяет составить ряд по возрастающей кислотности:

Натрийорганические соединения имеют ионный характер, причем анионом является остаток углеводорода (карбанион), а анионом — металл.

Натрийалкилы — сильные основания; так, этилнатрий — сильнейшее из известных оснований.

Натрийорганические соединения, как и органические соедине­ния лития, при действии воды, спиртов и кислот разлагаются с замещением натрия водородом:

1.3 Органические соединения калия

Исследования в области калийорганических соединений сопряжены со значительными трудностями, связанными с их большой реакционной способностью, и в частности со склонностью органических соединений воспламеняться на воздухе. Реакционная способность органических соединений щелочных металлов возрастает в ряду:

Калийорганические соединения удобно получать реакциями металлирования или из ртутьорганических соединений замещением менее реакционноспособной ртути на более реакционноспособный калий. Например, этилкалий образуется при действии на диэтилртуть металлическим калием:

Реакция присоединения металлоорганических соединений щелочных металлов к соединениям с двойными связями была впервые осуществлена К. Циглером (1928 г.) на примере взаимодействия фенилизопропилкалия со стильбеном. Течение реакции легко контролировать по обесцвечиванию фиолетово-красной окраски фенилизопропилкалия.

2. ЭЛЕМЕНТЫ ВТОРОЙ ГРУППЫ

Элементы второй группы имеют на внешней электронной оболочке два неспаренных электрона, поэтому они двухвалентны.

Преобладающее практическое значение имеют органические соединения двух металлов второй группы: магния и ртути.

Металл может быть связан с одним органическим остатком (алкилом или арилом), например R-Me-Hal:

, бромид метилмагния, или с двумя органическими остатками (алкилами или арилами), например R-Me-R:
, диэтилртуть.

2.1 Органические соединения магния

Магнийорганические соединения были широко введены в практику органического синтеза В. Гриньяром (1900 г.) и нашли большое применение в органической химии. Образование натнийорганинческих соединений наблюдал за год до этого учитель В. Гриньяра — Ф. Барбье.

Получены магнийорганические соединения почти всех классов органических веществ. Синтезы при участии магнийорганических соединений являются одним из важных препаративных методов в органической химии; описано свыше 20 тысяч синтезов при помощи магнийорганических соединений.

Способы получения.1. В среде эфира. Магнийорганические соединения образуются обычно при взаимодействии галогеноалкилов (арилов) с металлическим магнием в среде сухого эфира. Реакция идет при отсутствии влаги. В некоторых случаях реакцию инициируют, добавляя каталитические количества йода или дибромэтана.

2. Безэфирный метод синтеза. Главным препятствием к использованию магнийорганнческих соединений в промышленном органическом синтезе является применение огнеопасного этилового эфира в качестве растворителя. Поэтому были разработаны безэфирные методы синтеза магнийорганических соединений.

Образование магнийорганических соединений из галогеноалкилов и магния катализируется галоидными солями или кислородными соединениями различных металлов (Hg, Al, Sn) и неметаллов (Si, Sb, P) или их алкильными производными. Например, образование магнийорганического соединения в среде ароматических углеводородов (бензола, толуола) инициируется каталитическим количеством тетраэтоксисилана:

Полученное магнийорганическое соединение далее может быть использовано для синтеза кремнийорганических соединений:

3. Синтез винильных магнийорганических соединений в тетрагидрофуране. Долгое время были безуспешными попытки синтеза магнийорганических соединений с винильными радикалами из галогенвинилов и магния. Причиной этих неудач была незначительная подвижность галогенов при двойной связи. Однако применение в качестве реакционной среды тетрагидрофурана, а также тетрагидропирана, этиловых и дибутиловых эфиров этиленгликоля позволило осуществить эту реакцию (Г. Норман, 1954 г.):

Реакционная способность винильных магнийорганических производных так же высока, как алкильных магниевых соединений, они широко используются в реакциях введения винильного остатки в органические соединения (реакция винилирования).

Строение магнийорганических соединенийможет быть выражено простой формулой RMgHal, пригодной для оценки стехиометрии реакции. Однако в действительности магнийорганические соединения имеют более сложное строение, определяемое многими фактами (природой органического радикала, галогена и растворителя).