Цвет полярных молекул
Когда катионы попадают в поле действия анионов, то возникает взаимное влияние (рис. 10). Результаты зависят от способности электронных оболочек ионов к деформации. Эта способность обусловлена природой иона и силой, с которой данный ион может воздействовать на оболочки соседей. Как правило, ионы малого радиуса и большого положительного заряда деформируются слабо: очень крепко в таком случае положительное ядро притягивает электроны. Деформируемость и связанная с ней поляризация невелика и в том случае, если внешняя электронная оболочка иона подобна оболочке инертного газа, т. е. завершено ее заполнение электронами.
Если молекула состоит из ионов с заполненными электронными оболочками (MgO, ZnS), то возможность перехода электрона практически исключена, так как ему, попросту говоря, некуда переходить. Тогда из всего спектра видимого света молекула не отдает предпочтения ни одному участку. Такие молекулы не имеют окраски. В растворе они бесцветны, а в твердом состоянии белые. К такому типу красящих веществ относятся оксид цинка, оксид магния, фосфат и сульфид цинка, сульфат бария. Как видите, это все соединения элементов II группы периодической системы с полностью завершенными внутренними электронными оболочками.
Подобные соединения прямо могут служить неорганическими красителями — пигментами. В качестве красителей используются такие индивидуальные соединения, как, например, белила — оксид цинка или оксид титана (IV); чернь — это одно из аллотропных состояний углерода — сажа. Цвет может появиться лишь в том случае, если катион с подуровнями, заполненными электронами, связан с анионом, способным к значительной поляризации, например с тяжелыми ионами галогенов, таких, как Вг- или I-, некоторыми кислородсодержащими анионами PO43-, AsO43- и целым рядом других. Соли и оксиды металлов, имеющих атомы с незаполненными оболочками, в большинстве своем обладают окраской. Ионы металла имеют примерно тот же цвет, который присущ им в водном растворе: Си2+ — голубой, Сг3+ — зеленый и т. п. Существуют многочисленные анионы, способные придавать окраску ионам, особенно если это ионы металлов побочных подгрупп. Так, например, желтый анион CrO42-влияет на бесцветный катион серебра Ag+, что в результате реакции:
2Ag+ + CrO42-→Ag2CrO4
образуется красный осадок хромата серебра. В подобной же реакции бесцветный ион ртути Hg2+ образует оранжевое соединение HgCrO4. Однако, ион свинца — металла главной подгруппы IV группы, соединяясь с CrO42-,так и оставляет желтым цвет хромата свинца РbСгO4.
Рис. 10. Возникновение поляризационного эффекта (а) и усиление (б) взаимной деформации ионов.
Взаимное влияние катионов и анионов позволяет варьировать оттенки цвета.
Поэтому чаще всего применяются соединения переменного состава: желтый крон — смесь хрома и сульфата свинца РbСгO4 • nРbSO4, изумрудная зелень - гидроксид хрома переменного состава Сг203 • nН2O (n= 1,5—2,5), кобальт светло-фиолетовый и фиолетовый — фосфаты кобальта, гидратированные водой Соз(РО4)2 • 8Н2О или СоNH4PО4.
Таким образом, окраска полярной молекулы зависит от наличия у катиона свободных электронных подуровней, от способности катиона поляризовать анион и соответственно от способности этого аниона к поляризации.
Связь цвети вещества с положением элементов в периодической системе
Напомним, что существуют s-, р-, d- и f-элементы. Каждый из этих типов имеет свои особенности при образовании соединений. Появляющиеся продукты не всегда обладают цветом, в ряде случаев они бесцветные или белые.
Не имеют окраски неорганические вещества, молекулы которых образованы s- и р-элементами и имеют ионы с заполненными электронами оболочками: катионы щелочных и щелочноземельных металлов, анионы неметаллов первых трех периодов. К ним примыкают соединения (в основном оксиды) элементов, расположенных в периодической системе Д. И. Менделеева на условной границе металл — неметалл: сурьмы, висмута, свинца, алюминия. Из побочных подгрупп белый цвет имеют соединения элементов IV группы (переходные металлы): титан и цирконий. Причем цирконий, как более металлический элемент, входит в состав веществ только в виде катиона Zr4+, а титан и как катион, и в составе аниона. Широко применяются в качестве белых пигментов соли титановой кислоты; титанаты магния, кальция, бария и некоторых других элементов. Состав этих соединений таков, что у кислорода и катионов элементов II группы нельзя перевести электрон из основного в возбужденное состояние, так как нет свободных орбиталей, куда могли бы перейти электроны, запасшиеся энергией от светового кванта. У титана же и циркония слишком велика разница в величинах энергии между заполненными подуровнями и вакантными. У квантов видимого света просто не хватает энергии для возбуждения электронов.
Ионы, имеющие незавершенные оболочки, в большинстве случаев образуют окрашенные соединения. При этом, если анион не способен к сильной поляризации, то цвет вещества определяется катионом и соответствует окраске катиона в водном. растворе: железа — желтой, меди — голубой и др.
У d-элементов IV периода цвет соединений определяется переходами электронов с одной d-орбитали на другую и переносом заряда на ион металла. Затягивая электроны с орбиталей аниона, на вакантные орбитали своих атомов, катионы хрома, марганца, железа, кобальта, никеля и некоторых других металлов придают соответствующую окраску всем своим соединениям. Этим же объясняется окраска ряда оксидов элементов с переходными свойствами (металлов).
Необходимо, однако, заметить, что появление возможности того или иного перехода определяется влиянием атомов, с которыми соприкасается атом данного d-элемента. Пять d-орбиталей занимают в молекуле несколько иное положение, чем в свободном атоме. Разница в энергиях этих орбиталей как раз соответствует энергии квантов видимой части электромагнитного излучения и обусловливает цвет вещества, содержащего ионы Gr3+, Fe2+, Fe3+, Co2+, Ni2+, Mn4+, Mn7+. Цвет некоторых веществ, например оксида железа (III) Fe2O3 и гидроксида железа (III) Fe(OH)3, определяется сразу двумя обстоятельствами: электронными переходами с одной d-орбитали на другую и переносом заряда с аниона на катион.
Потенциалы переноса заряда зависят от межатомных, межионных, межядерных расстояний. Следовательно, и в соединениях d-элементов большую роль играет деформируемость катиона и аниона.
Элементы больших периодов, расположенные внизу групп элементов, деформируются легко. Особенно если у них имеется много внутренних незавершенных слоев или 18-электронные оболочки. Это относится как к катионам металлов, так и к анионам неметаллов. Примером, подтверждающим такое поведение, может служить взаимное влияние ионов свинца Рb2+ и иода I-. Оба они в водном растворе бесцветны и раствор иодида свинца тоже не имеет окраски.
Когда же из раствора начинает выделяться осадок этого соединения, то ионы cсближаются друг с другом и выпадает красивый золотисто-желтый осадок кристаллов РbI2. Здесь и катион и анион легко деформируются и происходит взаимная поляризация. Если ион сильно деформирует оболочку соседа, то говорят о его сильном поляризующем действии.
Росту деформируемости способствует увеличение радиуса ионаи уменьшение положительного заряда ядра. Так как эти величины предсказуемы на основании периодического закона Д. И. Менделеева, то в принципе можно прогнозировать наличие цвета у того или иного соединения, составленного из каких-либо конкретных анионов и катионов. Возникновение цвета у оксида элемента и отсутствие окраски у фторида возможно потому, что кислородный ион поляризуется легче, чем ион фтора, так как у него меньше положительный заряд ядра и больше радиус. Анион серы деформируется еще легче, потому что у него больше внутренних электронных слоев и есть {правда, совсем пустые) d-орбитали, которые он использует при образовании химических связей. Однако катионы цинка Zn2+, алюминия Al3+ и кремния Si4+, несмотря на довольно большие радиусы, не способны к деформациям, так как у них велик заряд иона.
Разноцветные ионы одного металла
Известно, что цвет большинства неорганических соединений определяется состоянием окисления входящих в него ионов. Этим широко пользуются в аналитической химии. Возможности изменения цвета обусловлены как различным состоянием электронов в зависимости от степени окисления, так и изменением поляризующего действия этих ионов.
Ион марганца Мn2+ не обладает окраской в водном растворе. Удаление двух электронов с 4s-орбитали не сильно затрагивает состояния внутренних d-электронов, которых у марганца как раз пять и каждый занимает одно из пяти возможных состояний. Однако более высокие степени окисления уже сильно влияют на эти электроны.
Кристаллы МnSO4 или МnСОз бесцветны (иногда МnСОз светло-розовый), но оксид МnО серо-зеленый, МnСl2 и Mn(NO3)2 розовые. Если в морской воде создается повышенная концентрация марганца, то это сказывается на образовании кораллов, перламутра и жемчуга. В Японии существуют специальные подводные плантации, где разводят жемчужниц — двустворчатых моллюсков. У этих организмов на внутренней поверхности раковин откладываются пластинчатые слои арагонита — одна из кристаллических форм карбоната кальция (о второй — кальците — упоминалось в связи со сталактитами). Если в эти слои попадают ионы марганца, то слои начинают приобретать розовый оттенок и получается розовый жемчуг. Включения в них других ионов придает желтоватый оттенок, а очень редко жемчуг бывает даже черным. Так как жемчуг по состааву — это карбонат кальция, то он может возникнуть и в подземных пещерах. В пещерах в Новом Афоне был обнаружен такой жемчуг в довольно значительном количестве.