Реферат на тему:
"Химия цвета"
Выполнила: Кекало Екатерина
Минск, 2004г
Содержание:
Введение
Строение молекул и цвет
· Спектры поглощения и цвет неорганических веществ
· Особенности твердого состояния неорганических красителей
· Цвет металлов
· Атомы те же – окраска разная
· Молекулы бесцветны, а вещество окрашено
· Цвет полярных молекул
· Связь цвета вещества с положением в периодической системе
· Разноцветные ионы одного металла
· Среда воздействует на цвет
· Основы структурной теории цветности органических молекул
Колориметрия (наука о методах измерения и количественного выражения цвета)
Список литературы
Введение.
Знаменитые строки, принадлежащие перу великого русского поэта Сергея Есенина:
Словно я весенней гулкой ранью
Проскакал на розовом коне…
долгое время казались лишь великолепным поэтическим образом, не имеющим никакого реального основания. Всем известно, что розовых лошадей в природе не бывает. Однако на самом деле это факт, который не ускользнул от точного взгляда поэта. На рассвете, когда не само солнце, а лишь его лучи появляются над землей, "алый свет зари" окрашивает белые цвета в нежные розовые тона. Отражать от белой поверхности, "красные" лучи, преобладающие и потоке света, вызывают ощущение розового или красноватого цвета. Такова одна из особенностей восприятия нами красочного мира.
Значит, цвет зависит не только от того, как окрашено вещество, но и от того, как оно освещено. Ведь цвет у вещества мы различаем лишь в том случае, когда на него падает луч света. В темноте все кажется черным. Следовательно, чтобы разобраться в природе цвета, надо помнить свойства световых лучей.
Обстоятельства совсем другого характера убеждают насв том, что выражение "голубая кровь" может иметь не иносказательный, а самый прямой смысл. Кровь рыб, выловленных в море, ничем не отличается по цвету от крови других крупных живых существ. Но в глубинах океана обитают существа, в теле которых действительно кровь голубого цвета. Одними из таких представителей являются голотурии. В пигменте, обеспечивающем цвет крови, вместо железа содержится ванадий. Именно его соединения придают голубую окраску жидкости, содержащейсяв глоуториях. В тех глубинах, где они обитают, кислорода в воде очень мало и им приходится приспосабливаться к таким условиям. Возникают в организмах соединения, которые "работают" совершенно иначе, чем у обитателей воздушного окружения. Структура образовавшихся соединений определяет и цвет.
Садоводов и цветоводов трудно удивить необычностью окрасок цветов и листьев. Черные тюльпаны, голубые розы и самые разнообразные оттенки сирени можно видеть на всех выставках цветов. И все же листья имеют зеленый цвет (так как в них образуется хлорофилл), однако не у всех растений. Вам могут перечислить целый ряд таких, у которых листья имеют другой цвет: лиловый, фиолетовый, присный или смесь оттенков незеленого цвета. Процессы, происходящие в листьях этих растений, приводят к образованию не только зеленого хлорофилла, но и химических структур, преобладающих в них и придающих необычный цвет, казалось бы, обычным листьям. Как тут не вспомнить другие есенинские строки:
Ягненочек кудрявый – месяц
Гуляет в голубой траве…
Никого уже сейчас не удивляют краски, светящиеся в темноте, цветные кинофильмы и цветная фотография, ткани необычных расцветок. Давно ли мы перестали смотреть па цветной телевизор как на сказочное чудо? Современная наука и техника каждодневно дарят нам осуществление того или иного стремления человека к красоте, яркости и цвету. Успехи химического производства, достижения в целом ряде смежных дисциплин: биологии, физики, медицине, а также действие полупроводников и оптические процессы в лазерах невозможно понять без знания основ взаимодействия света с молекулами, результатом которого является цвет.
Цвет, так же как и практически каждое крупное явление природы, имеет особенности, относимые нами к различным областям естествознания. Подробно останавливаясь на химической сущности цвета, нельзя, однако, не вспомнить тех уроков физики, на которых рассматривались свойства светового луча, спектр и другие явления, относящиеся к проблеме цвета, уроки биологии, связанные с особенностями зрения. Ведь цвета, которые мы воспринимаем, есть результат нескольких процессов:
1) взаимодействия магнитных колебаний, из которых состоит световой луч, с молекулами вещества;
2) избирательного поглощения, обусловленного особенностями структуры молекул, обладающих цветом, тех или иных световых волн;
3) воздействие лучей, отраженных или прошедших через вещество, на сетчатку глаза или на оптический прибор, способный различать цвет.
Без света все кажется темным. Однако видимый свет — это лишь небольшая часть общего потока электромагнитных волн, доступная непосредственному наблюдению человеком. Цвет может возникать и в том случае, когда поток падающих на вещество электромагнитных волн не воспринимается глазом. Так, некоторые краски и ткани начинают принимать разные порой фантастические расцветки, когда на них действует ультрафиолетовое излучение. Электроны, поглощающие энергию падающих лучей, начинают отдавать ее в виде волн другого диапазона, воспринимаемых человеческим глазом.
Состояние электронов в молекуле — вот основа для объяснения цвета. Подвижность электронов, их способность переходить с одного энергетического уровня на другой, перемещаться от одного атома к другому — все это создает возможность появления цвета.
Только на электронном уровне становятся понятны принципы учения о цвете. Пользуясь ими, можно успешно рассмотреть и появление окраски у бесцветной соли при растворении в воде или других растворителях, "выгорание красителя" под действием солнечного света, действие индикаторов и цветовых определителей температуры "цветных градусников". Красители и краски не только украшают нашу жизнь, но и помогают в технике и различных отраслях народного хозяйства, защищают металлы от разрушения, делают более прочными изделия из полимеров и стекла, охраняют нас от вредных веществ, сигнализируя своей окраской об опасности заражения вредными веществами. Они находят самое разнообразное применение не только в химии, но и химической технологии. В медицине цветные реакции помогают вовремя обнаружить болезни, светящиеся красящие вещества помогают следить за приборами в полумраке кабины автомобиля, в космическом корабле и на капитанском мостике океанского лайнера, пересекающего в любую погоду безбрежный океан.
Строение молекул и цвет.
Единой теории цвета не существует. Однако можно подметить некоторые закономерности, связывающие окраску со строением молекул. Цвет связан с подвижностью электронов в молекуле вещества и с возможностью перехода электронов при поглощении энергии кванта света на еще свободные уровни.
Существуют различия принципиального характера между механизмами возникновения цвета у металлов, неорганических соединений и в органических молекулах. Хотя во всех случаях цвет возникает в результате взаимодействия квантов света с электронами в молекулах вещества, но так как состояние электронов в металлах и неметаллах, органических и неорганических соединениях различно, то и механизм появления цвета неодинаков. У металлов для цвета важна правильность кристаллической решетки и возможность электронам относительно свободно двигаться по всему куску металла. Цвет большинства неорганических веществ обусловлен электронными переходами и соответственно переносом заряда от атома одного элемента к атому другого. Основную, решающую роль играет в этом случае валентное состояние элемента, его внешняя электронная оболочка.
Далеко не все органические вещества обладают цветом. Однако у тех веществ, которые имеют окраску, в структуре молекул есть принципиальное сходство. Все они, как правило, большие молекулы, состоящие из десятков атомов. Для возникновения цвета имеют значение не электроны отдельных атомов, а состояние системы электронов, охватывающей всю молекулу целиком. Подвижность такой системы, ее способность легко изменять свое состояние под небольшим воздействием световых квантов и обусловливает избирательное поглощение определенных волн из набора, составляющего видимый свет.
Чтобы понять зависимость цветности от строения, нужно рассмотреть, в чем состоят особенности энергетического состояния электронов того или иного типа молекул.
Спектры поглощения и цвет неорганических веществ
Тот или иной цвет вещества означает, что из всего интервала 400-700 нм длин волн пилимого света им поглощаются какие-то определенные кванты, энергия которых в общем-то невелика.
Из этого в свою очередь следует, что в молекулах окрашенных веществ энергетические уровни электронов довольноблизко расположены друг к другу. Если разница ΔЕ велика, то употребляются другие кванты, несущие больше энергии, например, ультрафиолетовые. Такие вещества, как азот, водород, фтор, благородные газы, кажутся нам бесцветными. Кванты видимого света не поглощаются ими, так как не могут привести электроны на более высокий возбужденный уровень. Если бы наши глаза способны были воспринимать ультрафиолетовые лучи, то в таком ультрафиолетовом свете и водород, и азот, и инертные газы казались бы ним окрашенными.
Чем больше электронов в атоме, тем теснее друг к другу электронные уровни. Особенно хорошо, если в атоме есть незанятые электронами орбиты. В таком случае для перехода электрона из одного состояния в другое требуются кванты света уже с меньшей энергией, которую несут лучи видимой части спектра. Такие многоэлектронные галогены, как хлор, бром, иод, уже окрашены. Имеют окраску оксиды азота NО2, N2О3 и ковалентные соединения, например CuCl2, AlI3. Окраска молекул (рис. 1.), состоящих из нескольких атомов, зависит от целого ряда факторов. Если действие этих факторов таково, что они сближают электронные уровни, то это способствует появлению или углублению окраски. Так более тесное взаимодействие атомов при переходе из газообразного в жидкое и далее твердое состояние может способствовать появлению или