Акумулятори дають приблизно таку ж напругу, як і гальванічні елементи. Так, найпоширеніший кислотний свинцевий акумулятор дає близько 2 В, лужний нікель-кадмієвий - близько 1,3 вольт, а нікель-залізний - близько 1,4 вольт. Такої напруги цілком достатньо для роботи кварцових годинників, але вже лампочка для кишенькового ліхтаря горіти від одного акумулятора не буде. Тому, як і гальванічні елементи, акумулятори для підвищення напруги з'єднують у батареї. Для живлення диктофона, плейера чи фотоапарата досить двох з'єднаних послідовно акумуляторів. На автомобілях з'єднують послідовно вже шість свинцевих акумуляторів; вони здатні короткочасно давати дуже великий струм, необхідний для запуску двигуна. Гальванічні елементи і батареї великих струмів давати не можуть. Акумулятори працюють також на космічних кораблях, в електромобілях і електрокарах, їх використовують для аварійного висвітлення.
У 1970 р. почались дослідження нового типу акумуляторів - нікель-гідридних, а в 80-і роки з'явилися перші робочі зразки, у яких струм генерувався в результаті реакції 2NіOOH + H2 = 2Nі(OH) 2. При заряді водень знову виділявся. Тому що водень для таких акумуляторів знаходиться під великим тиском, блок з електродами поміщають у сталевий циліндр. Ці акумулятори запасали на 40% більше енергії (на одиницю маси), ніж нікель-кадмієві. Через високу вартість (тисячі доларів кожний) ці акумулятори застосовували насамперед там, де особливо важливі економія ваги, тобто в космічній техніці. В останні роки розроблені мініатюрні метал-гідридні
акумулятори; у них при заряді катіони водню в електроліті відновлюються, атоми водню дифундують у метал (звичайно використовуються интерметалічні склади) і утворюється гідрид. При розряді процес йде в зворотному напрямку. Перевагу таких акумуляторів може оцінити кожен власник мобільного телефону.
Про потенційні можливості акумуляторів говорить такий факт. У Західному Берліні, побоюючись відключення електроенергії владою ГДР (у 1961 році вже була почата спроба задушити місто блокадою), спорудили величезну акумуляторну батарею. Ця батарея масою 630 тон при потужності 17 мегават могла в разі потреби протягом години, до запуску аварійних електростанцій, постачати багатомільйонне місто електроенергією.
В останні десятиліття інтенсивні роботи ведуться по створенню й удосконаленню паливних елементів - пристроїв, що виробляють електроенергію за рахунок хімічної реакції між речовинами, що безупинно подаються до електродів ззовні. Окислювачем найчастіше слугує кисень, а паливом може бути, наприклад, водень. На базі таких елементів уже працюють дослідні електростанції.
Будь-який електрохімічний елемент у принципі є джерелом електричного струму. Однак для практичного використання як джерела струму придатна лише незначна частина цих елементів. Це пов’язано з тим, що елемент повинен мати досить велику електричну ємність, високу швидкість і оборотність електрохімічних процесів, стабільність при експлуатації, технологічність і економічність виробництва.
Всі хімічні джерела струму (ХДС) поділяються на три групи: джерела струму одноразової дії (гальванічні елементи), джерела струму багаторазової дії (акумулятори), паливні елементи.
У первинних ХДС електродні матеріали завантажуються в елемент при виготовленні, і елемент експлуатується, поки його напруга не впаде до деякого критичного значення. Електродні матеріали ХДС, що відпрацювали, йдуть у відходи або частково переробляються для регенерації компонентів.
В акумуляторах електроактивні речовини у ході попереднього електролізу (заряд акумулятора). У процесі експлуатації вони витрачаються (розряд акумулятора), а напруга акумулятора знижується до деякої гранично допустимої величини, після чого знову проводять заряд. Процеси заряду і розряду утворюють цикл роботи акумулятора. Максимальне число циклів (звичайно декілька сотень) залежить від типу акумулятора і умов його експлуатації.
Робота ХДС характеризується рядом параметрів, від яких залежить можливість використання ХДС для тих або інших потреб.
Електрорушійна сила (ЕРС) хімічного джерела струму, як і будь-якого електрохімічного кола, визначається різницею потенціалів електродів (анода і катода) при розімкненому зовнішньому колі.
Повним внутрішнім опором r ХДС називається опір, що чиниться ним при проходженні всередині нього постійного струму:
де ЕП - ЕРС поляризації: І - сила струму.
Перша з цих складових r0 називається омічним опором і являє собою суму опорів електродів і електроліту. Друга складова rП - зумовлена зміною потенціалів електродів при проходженні струму і називається опором поляризації, або фіктивним опором, його величина залежить від величини струму. У процесі розряду ХДС повний внутрішній опір збільшується через зміну складу електроліту і електродів. Наявністю внутрішнього опору зумовлене те, що розрядна напруга Up (тобто напруга при замкненому зовнішньому колі) завжди менша за ЕРС джерела струму:
(нижній індекс "р" означає розряд).
При постійній величині струму та постійній температурі електроліту розрядна напруга зменшується у часі.
Зарядна напруга Uз оборотних систем виражається рівнянням:
При постійній величині зарядного струму зарядна напруга збільшується у часі внаслідок збільшення ЕП. У кінці заряду, коли відбувається в основному процес електролізу води, значення Uз стабілізується.
Розрядною ємністю (ємністю за струмом) Qр називається та кількість електрики, яка може бути отримана від ХДС при даних умовах роботи, тобто при заданих температурі, величині розрядного струму і кінцевому значенні розрядної напруги.
Одними з найбільш поширених первинних ХДС є мангано-цинкові елементи, виробництво яких становить близько 3 млрд. одиниць на рік. Це сольові елементи (система Лекланше):
(-) Zn | 20% - ний розчин NH4Cl | MnO2 | C (+)
та лужні
(-) Zn | KOH | MnO2 | C (+)
Негативним електродом елемента Лекланше є цинковий стакан, електроліт - розчин хлориду амонію із загусником (борошном або крохмалем). Позитивний електрод являє собою вугільний стрижень, оточений піролюзитом MnO2. До розчину хлориду амонію додається невелика кількість хлориду цинку, хлориду кальцію і хлориду ртуті. Перші дві солі гігроскопічні і перешкоджають пересиханню елемента та збільшують в’язкість розчину. Хлорид ртуті виконує подвійну функцію: з одного боку, ртуть із хлориду частково осідає на цинку (Zn + HgCl2 = ZnCl2 + Hg), поверхня якого внаслідок цього амальгамується і стає більш однорідною, що зменшує саморозряд. З іншого боку хлорид ртуті знищує мікроорганізми і запобігає бродінню крохмалю. Останнім часом виготовляють елементи без домішок сполук ртуті, які замінюють органічними інгібіторами. Порошок піролюзиту для збільшення електричної провідності змішується з сажею або графітовим порошком.
За конструкцією сучасні елементи розділяються на циліндричні, прямокутні, чашкові та галетні.
Хімічним процесом, що перебігає в елементі, є окислення цинку діоксином марганцю:
Zn + 2NH4Cl + 2MnO2 = [Zn(NH3) 2] Cl2 + Mn2O3 + H2O
ЕРС елемента типу Лекланше досягає 1,5 В, його внутрішній опір дорівнює 0,05 - 1 Ом, потужність 20-25 Вт/кг. Існують різні варіанти елементу Лекланше. У деяких із них замість хлориду амонію застосовується, наприклад, хлорид (або бромід) магнію, який сприяє зменшенню саморозряду внаслідок захисної дії Mg(OH) 2, що утворюється, але цей елемент має більш низьку напругу. У тих випадках, коли від елемента потрібна висока питома потужність, замість цинку застосовують більш легкі метали - магній або алюміній, наприклад мангано-магнієвий елемент:
Mg | MgBr2 | MnO2 | C,
в якому відбувається реакція
MnO2 + Mg + H2O = MnO + Mg(OH) 2
Малюнок 1.2 Схема мангано-цинкового елементу (батарейки)
В акумуляторах при пропусканні крізь них електричного току від зовнішнього ланцюгу (заряд) йдуть хімічні реакції в електродах і розчинах, близькі до оборотних, і робота електричного току акумулюється у вигляді вільної енергії продуктів реакції. Заряджений акумулятор дає електричний струм при розряді, після чого знову можна його зарядити.
Малюнок 2. Загальна будова акумулятору
Найбільш широко використовують кислотний свинцевий, лужний кадмієво - нікелевий та лужний срібно - цинковий акумулятори.
Свинцевий кислотний акумулятор в зарядженому стані являє собою елемент:
(-) Pb, PbSO4(т) | H2SO4 (32-34%) | PbO2, Pb (+)
при роботі якого протікають наступні електродні реакції: на лівому катоді:
на правому електроді:
сумарна реакція процесу:
Малюнок 3. Схема дії свинцевого акумулятору
Ізобарний потенціал цієї реакції відображає зникнення твердих свинцю і його діоксину, виникнення твердого сульфату свинцю, а також зникнення 2 моль сірчаної кислоти і виникнення 2 моль води: