Так як хімічні потенціали твердих фаз постійні (при даних температурі і тиску), то
Ізобарний потенціал і ЕРС акумулятора залежать від концентрації сірчаної кислоти (точніше - від активності компонентів розчину).
У процесі розряду акумулятора концентрація сірчаної кислоти зменшується, а при зарядженні збільшується.
Цей акумулятор у зарядженому стані являє собою електрохімічний елемент:
(-) Cd | Cd(OH) 2, KOH (20%) || KOH (20%), Ni(OH) 2, Ni(OH) 3/Ni (+)
Сумарна реакція і цьому елементі:
Cd + 2Ni(OH) 3 = Cd(OH) 2 + 2Ni(OH) 2
Значення
для цієї реакції не повинно залежати від концентрації лугу, так як в сумарній реакції приймають участь тільки тверді речовини. Однак реакції на електродах супроводжуються зміною концентрацією лугу і утворенням різниці концентрації у двох електродів:Ця різниця повинна визначати концентраційну поляризацію, котра зменшує ЕРС елементу. Однак в результаті перемішування в умовах близькості електродів ця різниця концентрацій практично не виникає.
ЕРС кадмієво - нікелевого акумулятора рівна приблизно 1,36 В. Використовуються такі лужні акумулятори, в яких кадмій і оксид кадмію замінюють залізом та закисним залізом.
Анодом є пориста цинкова пластинка, катодом оксиди срібла Ag2O і AgO, отримані електролітичним окисненням металічного срібла. Електроліт - концентрований розчин КОН, насичений цинкатом калія Zn(OK) 2. Заряджений акумулятор може бути представлений у вигляді:
(-) Zn | Zn(OK) 2 + KOH(40%) | Ag2O або AgO | Ag (+)
Сумарна реакція в цьому елементі
AgO + Zn = ZnO + Ag
Процес проходить у дві стадії: AgO відновлюється спочатку до Ag2O, далі до металічного срібла. ЕРС елементів з катодом AgO рівна 1,86 В, з катодом Ag2O - 1,58-1,60 В. При малій густині струму напруга падає на 0,3 В при переході від першої стадії до другої. Практично використовується лише друга стадія.
Після розряду акумулятора:
(-) Zn | ZnO, Zn(OK) 2 + KOH (40%) | Ag (+)
В таких акумуляторах на відміну від свинцевих і лужних електроліт в реакціях заряду і розряду не приймає участі, саме цьому його можна брати в малій кількості. Це дозволило сконструювати акумулятори, що мають дуже ефективну конструкцію: електроди знаходяться один біля одного і розділені тонким шаром целофану. Весь електроліт знаходиться в порах електродів. Срібно - цинкові акумулятори мають велику ємність, високу енергію і високу потужність на одиницю маси і об’єму, саме цьому вони широко застосовуються там, де необхідні акумулятори невеликого розміру.
У наш час велика частина електроенергії виробляється на теплових електростанціях при спалюванні природних енергоносіїв (вугілля, нафти, природного газу). При цьому процес перетворення хімічної енергії палива в електричну проходить через три стадії: перетворення хімічної енергії у теплову при згоранні палива; далі - теплової енергії у механічну роботу у паровій машині; нарешті, перетворення механічної роботи в електроенергію у генераторі. На всіх цих стадіях втрачається енергія і коефіцієнт корисної дії (ККД) сучасних теплових електростанцій становить близько 40%, а для більшості електростанцій - 25%.
Термодинамічний аналіз, проведений ще в кінці XIX ст. ., показав, що в гальванічних елементах немає такого обмеження ККД, як у теплових машинах. У 1893 р. Нернст обчислив, що якби вдалося перетворювати хімічну енергію вугілля в електричну електрохімічним шляхом, то максимальний теоретичний ККД такого процесу становив би 99,75%. Однак через чисельні технічні труднощі перші працездатні паливні елементи вдалося створити лише у 30 - 40 - х роках ХХ ст. .
Паливними елементами називають гальванічні елементи, в яких електрохімічно активними речовинами слугують звичайні горючі речовини і кисень, а процесом генерування струму є окислення горючих речовин. При роботі елемента проводиться безперервна подача реагентів і відвідення продуктів реакції, так що склад системи практично не змінюється.
При роботі будь-якого хімічного джерела струму проходить сумарна хімічна реакція взаємодії окисника з відновником. Максимальна електрична робота, отримана при роботі джерела струму, рівна зменшенню ізобарного потенціалу для цієї реакції:
Перетворення енергії у електричну шляхом паливних елементів доволі складний процес. Максимальна електрична робота, отримана при складному перетворенні, визначається тепловим ефектом реакції
Найбільш реакційно здатним видом палива є водень. Воднево - кисневі елементи зазвичай виготовляють з застосуванням мілко дрібних вугільних або нікелевих електродів, що занурені в лужний розчин електроліту. Схематично такий елемент можна уявити в такому вигляді:
Малюнок 4. Воднево-кисневий паливний елемент
При роботі елемента на негативному електроді протікає електродна реакція:
На позитивному
Сумарна реакція
Теоретичне значення ЕРС воднево - кисневого елемента при 250С дорівнює 1,229 В і не залежить від складу розчину - електроліту.
При розряді воднево - кисневих елементів напруга тримається у межах 07, - 0,9 В, в залежності від густини розрядного струму на електродах (в лучних конструкціях елементів густина струму сягає 200-300 ма/см2).
Інші види газоподібного палива (оксид вуглецю, вуглеводні) практично можуть бути застосовані у паливних елементах тільки при підвищених температурах (вище 400-5000С). У таких високотемпературних елементах у якості електроліту використовують або розплави вуглецевих солей лужних металів, або тверді електроліти з аніонною (кисневою) проводністю.
Спроби безпосередньо використовувати тверде вугілля у паливних елементах поки безуспішні. Вугілля може бути використане тільки після попередньої газифікації його. Якщо газифікацію проводити за допомогою СО2, спостерігається наступна послідовність реакцій:
Газифікація
В паливному елементі
Сумарна реакція
Водень - кисневий елемент можна створити, наприклад, за допомогою двох платинових електродів, занурених у водний розчин гідроксиду калію. Один електрод омивається воднем, інший - киснем;
Pt(H2) | KOH, насичений H2 | KOH, насичений О2 | (O2) Pt.
У цьому елементі окиснення водню і відновлення кисню просторово розділені, і струм генерується у процесі реакцій:
Тобто сумарний процес зводиться до окиснення водню киснем з утворенням води. Істотним недоліком, такого паливного елемента є дуже мала густина струму. Для збільшення густини струму використовують підвищений тиск і температуру, спеціальні конструкції електродів, перемішування розчину тощо.
Розробка паливних елементів продовжується. Принципово доведена можливість використання деяких видів палива в паливних елементах і перетворення їх хімічної енергії в електричну з практичним ККД до 75 - 90%.
Розвиток техніки, яка зробила якісний стрибок у другій половині ХХ століття, істотно підвищив вимоги до джерел електричної енергії. Поява компактних ХДС стала дуже актуальною. Потрібні були ХДС, здатні зберігати заряд і працювати безупинно роками. Крім того зростає дефіцит кольорових металів, особливо срібла, що вимагає їхньої заміни іншими матеріалами. Рішення цих задач стало можливим на основі створення джерел струму з електролітами у неводних розчинниках.
У хімічних джерелах струму як відновники, як правило, використовують метали. Із зіставлення значень електродних потенціалів у ряді напруг металів випливає, що найбільш енергоємні анодні матеріали розташовані у верхньому лівому куті періодичної системи елементів. Теоретичні значення питомої енергії, що можуть забезпечити ці метали, складають (у Втгод/кг): для Li - 11757, Mg - 5216, Al - 4946, Са - 3837, Na - 3163. У той же час теоретичні значення питомої енергії для традиційних матеріалів ХДС дорівнюють: для Zn - 623, Fe - 423, Ni - 278, Cd - 190 Втгод/кг. Однак високі електродні потенціали роблять метали І, ІІ, ІІІ групи періодичної системи нестійкими у водному середовищі, що практично виключає їх використання у ХДС. Енергетичні можливості легких металів вдалося реалізувати лише після того, як було показано, що багато з них, і в першу чергу літій, стійкі і здатні анодно розчинятись у неводних розчинниках.
Існує ряд органічних сполук, які не містять у своїй молекулі рухливого атома водню і відносяться до класу апротонних диполярних розчинників (АДР.). В електролітах на основі цих розчинників літій не тільки може зберігатися на протязі багатьох років, але і виявляє поведінку, властиву рівноважним електродам. Зокрема, його потенціал підпорядковується рівнянню Нернста у широкому інтервалі концентрацій іонів літію, не залежить від перемішування розчину, швидко повертається до вихідного значення після малих катодних і анодних поляризацій.