Смекни!
smekni.com

Хром и методы его определения (стр. 3 из 3)

При анализе других объектов, например осадков от аммиака, содержащих малые количества хрома, окисление можно осуществлять сплавлением с перекисью натрия в фарфоровом тигле. Во всех случаях полученный раствор хромата переносят в мерную колбу такой емкости, чтобы интенсивность окраски раствора после разбавления до метки соответствовала 0,01-0,1 мг Cr2O3 в 1 мл. Заканчивают определение титрованием раствора такого же количества реактивов стандартным раствором бихромата калия до одинаковой с анализируемым раствором окраски или же каким-нибудь другим обычно применяемым колориметрическим или фотометрическим способом измерения.

2.3 Метод с дефинилкарбазидом

Малые количества хрома (микрограммы) можно определять по реакции с дефинилкарбазидом, который окисляется бихроматом в слабокислом растворе с образованием соединения, окрашенного в красно-фиолетовый цвет.

Ванадий, если он присутствует в значительных количествах, мешает определению. Его можно удалить экстракцией хлороформом после переведения в оксихинолят.

Уран не влияет на реакцию с дефинилкарбазидом.

2.4 Атомно-абсорбционный метод

Сущность метода. Прямое определение хрома возможно, когда его концентрация превышает 100 мкг/л. Если приходиться анализировать более разбавленные растворы, то во многих случаях достаточно упарить раствор после подкисления его азотной кислотой; но при анализе очень разбавленных растворов или при необходимости повысить чувствительность определения рекомендуется предварительно выделить металл экстракцией.

Реактивы.

Горючие газы – ацетилен, пропан, водород. Можно пользоваться продажными баллонами, снабженными редукторами.

Воздух. Должен быть отделен от посторонних веществ пропусканием через фильтр и высушиванием.

Деионизированная дистиллированная вода. Ее следует применять при приготовлении всех реактивов, калибровочных стандартных растворов и при разбавлении пробы.

Соляная кислота, концентрированная.

Азотная кислота, концентрированная.

Стандартные растворы металлов. Приготавливают серии стандартных растворов солей различных металлов, концентрацией 5 – 1000 мкг/л, соответствующим разбавлением запасных растворов дистиллированной водой, содержащей 1,5 мл концентрированной азотной кислоты в одном литре. Запасные растворы солей.

Хром. Растворяют 2,8289 г K2Cr2O7 в 200 мл дистиллированной воды, прибавляют 1,5 мл концентрированной HNO3 и разбавляют до 1000 мл такой же водой; 1,00 мл полученного раствора содержит 1 мл хрома.

Ход анализа. Приборы для атомно-абсорбционной спектрофотометрии различают и по конструкции, и по методике работы на них, поэтому следует строго следовать прилагаемой к прибору инструкции. Приводим лишь некоторые ступени хода анализа. Вставляют пустотелую катодную лампу, предназначенную для определения требуемого элемента, и устанавливают на указанную для определения этого элемента длину волны (хром: длина волны – 357,9 нм; горючий газ – ацетилен; газ-окислитель – воздух). Определяют оптимальное соотношение горючего газа и газа-окислителя, измеряя отношение в области, близкой к ориентировочным данным, и отмечают отношение с минимальным поглощением при холостом опыте и с максимальным поглощением определяемого элемента – хрома. Концентрацию последнего выбирают так, чтобы абсорбция была 0,5-0,8. Определяют время достижения равновесного состояния с момента впрыскивания пробы. Находят оптимальную ширину щели, определяют оптимальную высоту оптической оси над горелкой, выявляя максимум абсорбции стандартного раствора при перемещении горелки в вертикальном направлении. Для построения градуировачного графика вводят поочередно в пламя горелки рабочие стандартные растворы, начиная от раствора с минимальным содержанием определяемого элемента: не менее четырех концентраций, включая концентрацию, близкую к той, которая ожидается в анализируемом растворе. Каждое измерение проводят не менее двух раз, при построении графика берут среднее значение.

2.5 Другие методы

Хром количественно осаждается аммиаком. Осадок следует под конец прокаливать в атмосфере водорода, иначе получаются повышенные результаты вследствие окисления хрома в процессе прокаливания. В связи с этим, а также и потому, что хром почти всегда сопровождают посторонние, осаждающиеся аммиаком элементы, как, например, железо, алюминий, фосфор и ванадий, этим методом для определения хрома пользуются лишь в редких случаях.

Осаждение хрома в виде хромата серебра Ag2CrO4, хромата ртути Hg2CrO4 и хромата бария BaCrO4 представляет интерес главным образом для группового разделения и качественного испытания на хром, а не для количественного его определения, так как многие другие элементы также образуют нерастворимые соединения с этими реагентами.

Точные результаты получаются при определении хрома методом, основанным на восстановлении хромата иодистоводородной кислотой и титровании выделяющегося при этом йода раствором тиосульфата натрия. Этот метод, однако, не получил такого широкого распространения, так как железо, медь, мышьяк, ванадий и молибден, которые в состоянии высшей валентности выделяют йод в кислых растворах йодида калия, должны отсутствовать.

Известен колориметрический метод определения хрома с комплексоном III (этилендиаминтетраацетатом натрия). Метод специфичен, мешает только окрашенные катионы (своей окраской), но сравнительно мало чувствителен (оптимальные концентрации хрома 5-80 мг/л). Светопоглощение получаемого красно-фиолетового раствора измеряют, применяя зеленые светофильтры (длина волны 550 нм).


3. Теория определения хрома экспериментально. Качественный анализ компонентов процесса хромирования

Объект исследования: твердые отходы гальванических процессов.

Оборудование и реактивы: пробирки, фарфоровая ступка, пестик, растворы кислот, щелочей, вода дистиллированная, химические стаканы, стеклянная палочка, сухое горючее, складчатый фильтр.

Поступившую для анализа пробу необходимо измельчить в фарфоровой ступке, тщательно перемешать и взять среднюю пробу. Среднюю пробу необходимо отобрать методом квадрата (пробу разложить в виде квадрата на листе белой бумаги и делить диагоналями на четыре треугольника, две противоположные части отбрасываются, а две другие соединяются, снова ссыпаются в фарфоровую ступку и еще раз измельчаются и снова делится квадрат по диагонали). Полученную таким образом среднюю пробу помещают в банку с притертой пробкой.

Затем производят процессы разложения (вскрытия) пробы, растворение.

растворение в воде: небольшое количество средней пробы помещают в пробирку и растворяют в дистиллированной воде при комнатной температуре. С помощью универсальной Ind бумаги определяют характер среды pH и растворение осадка в воде.

проводится также растворение пробы небольшого количества при нагревании, оценивается осадок и среда рН.

растворение в трех мл 2н серной кислоте 0,02 г пробы: наблюдается растворение осадка, изменение цвета окраски, pH среды.

растворение в NH4Cl, NH4OH также наблюдаются изменения.

растворение в NaOH (8% и 4н) изменение окраски осадка.

4. Получение результатов

В результате эксперимента делают предположения о наличии ионов железа, алюминия и др., которые подтверждаются специфическими реакциями. Отфильтровав осадок и промыв его дистиллированной водой, растворяют в различных кислотах и щелочах, добавляют специфические реагенты и наблюдают аналитический сигнал.

Если при растворении твердого отхода в HNO3 (конц), добавить персульфат аммония (NH4)2S2O8, наблюдается окрашивание раствора в оранжевый цвет, то это говорит о наличии ионов Cr+6, т.е. реакция восстановления ионов хрома 6+ до хрома3+ не произошла или произошла не до конца.


Выводы

Отходы с основных ванн гальванического производства смешиваются, экспериментальные данные могут показать заниженное содержание тяжелых металлов, учитывая это пробы необходимо брать в достаточном количестве и, если это возможно, то отход гальванического производства необходимо отобрать от конкретного технологического процесса.


Список литературы

1. М.П. Грачева «Гальванотехника при изготовлении предметов бытового назначения»

2. Лурье Ю.Ю. «Практическое руководство по неорганическому анализу» - М.,1960 г.

3. «Вредные вещества в промышленности. Справочник для химиков, инженеров, врачей» под ред. Лазарева Н.В., Гадаскиной И.Д., 608стр.

4. Крешков А.П. «Основы аналитической химии. Теоретические основы. Качественный анализ» - М.,1970 г.

5. Журнал «Вестник Татарстанского отделения Российской Экологической Академии», 1(19) 2004 г.

6. «Охрана окружающей среды от отходов гальванического производства» Ю.Н. Меркушев, В.Г. Маклецов, В.Г. Петров (материал семинара) – М.:1990 г.

ПРИЛОЖЕНИЕ

Состав твердожидкого отхода

№ п/п Технологическая линия Ванна, с которой удаляется твердо-жидкий отход Теоретический отход Основные параметры
1. Хромирование Обезжиривание химическое и электрохимическое 90%-«органика»10%-М(ОН)2 ,MeSiO3 , Me2 (PO4)3 ,Me=Fe,Cu Объем ванны: 2500 л.Периодичность очистки – 1 раз в 2 годаКоличество ванн: 1 шт.
Хромирование стальных деталей Fe(OH)3, Fe(OH)2, FeSCr(OH)3-50%Cr+6, сульфатыK2SiF6,BaSO4,Fe, Cu- до 10г/л Объем ванны: 2500 л.Периодичность очистки – 1 раз в 2 годаКоличество ванн: 2 рабочие ( всего 3шт.)
Активация в кислоте стальных деталей Соединение железа – 40% Объем ванны: 980 л.Периодичность очистки – 1 раз в 2 годаКоличество ванн: 1 шт.

Технологическая схема процесса хромирования