Гельпроникающая хроматография на колонке используется для очистки пестицидов, а также жирорастворимых витаминов перед их определением методом ВЖХ.
Электрофорез
Метод анализа, основанный на способности заряженных частиц к передвижению во внешнем электрическом поле называют электрофорезом (от “электро” и греческого phoresis — перенесение).
Электролиз относится к методам разделения без превращения веществ, на основе заряда частиц. По технике выполнения метод аналогичен хроматографии, поэтому и рассматривается в этой главе.
Рис 3.5.1. Схема прибора для электрофореза.
Нередко под электрофорезом понимают перемещение коллоидных частиц или макромолекул, в отличие от иовофореза - перемещения неорганических ионов малого размера.
Передвижение частиц при электрофорезе зависит от ряда факторов, основными из которых являются: напряженность электрического поля; величина электрического заряда; скорость и размер частицы; вязкость, рН и температура среды, а также продолжительность электрофореза.
Электрофорез можно проводить как в свободном растворе (фронтальный электрофорез), так и на носителях (зональный электрофорез). Последний вариант предпочтительнее, т.к. носители способствуют стабилизации электрофоретических зон. В качестве носителей используют: фильтровальную бумагу, силикагель, крахмал, оксид алюминия, поливинилхлорид, агаровый и полиакриламидный гели и др.
Электрофоретическое разделение осуществляют на бумаге, в тонком слое сорбента, колонке или в блоке (который часто формируют из суспензии крахмала в подходящем электролите).Аппаратура для электрофореза выполняется по единой схеме: источник тока, камера для электрофореза, два электрода, соединяющих камеру с источником тока и приспособление для сбора и идентификации разделенных веществ (последний блок в некоторых случаях отсутствует). Для электрофореза используют как готовые наборы аппаратуры (универсальный прибор для иммуноэлектрофореза и электрофореза белков на бумаге и крахмале, набор для электрофоре
за в полиакриламидном геле венгерской фирмы Реанал), так и наборы, составляемые экспериментатором из отдельных приборов.На рис. 3.5.1 представлена схема прибора для электрофореза на бумаге. Электрофоретическая камера состоит из двух кювет, в которые помещают графитовые электроды и раствор проводящей жидкости (буферный раствор). Выше кювет находится подставка для носителя бумаги. Смесь веществ, подлежащих разделению, наносят на пропитанную проводящей жидкостью бумагу. Бумагу подсушивают, помещают на подставку, концы погружают в кюветы, затем камеру плотно закрывают крышкой. После пропитывания бумаги проводящей жидкостью подключают электрический ток. По окончании электрофореза бумагу подсушивают. Качественную и количественную оценку осуществляют, применяя методы, используемые в бумажной хроматографии, например, проявление белков с помощью красителей, количественную оценку - методом денситометрии.
Важной областью применения электрофореза является анализ белков сыворотки крови, аминокислот гидролизатов белков, нуклеиновых кислот и т.п. В кислотном буферном растворе аминокислота находится в виде катиона NHз+......COOH, который будет перемещаться к катоду, в то время как в щелочном буфере аминокислота превращается в анион NH2....COO-, и будет двигаться к аноду. В изоэлектрической точке аминокислота находится в растворе в виде биполярного иона NH3+......COO- и не будет передвигаться в электрическом поле.
Рис. 3.5.2. Электрофореграмма (а) и схемы (б) белковых фракций.
A - белковые фракции сыров: 1, 17 – российского, 2, 16 - волжского, 3, 15 – “Орбита”, 4, 14 - колбасного, 5, 13 – голландского, 6, 12 – пошехонского, 7, 11 – “сырного” казеина после осаждения при pH 4,6, 8, 10 – молочной сыворотки, 9 – казеина по Гаммерстену, 18 – “городского”.
Б – белковые фракции сыра (I), сырного казеина (II)
Ввиду того, что отдельные белки и аминокислоты имеют различные изоэлектрические точки, при определенном значении рН они будут двигаться с различной скоростью. Подбирая соответствующие буферные растворы для установления определенной скорости движения и растворимости веществ, можно использовать электрофорез для их разделения. Метод позволяет разделять вещества, различие в изоэлектрической точке которых составляет до 0,02 единиц рН. Градиент рН в 0,02 единицы часто достигают прибавлением амфолитов, представляющих собой готовую смесь алифатических полиаминаполикарбоновых кислот.
Электрофоретическое разделение белков широко используется для оценки качества мяса и мясных продуктов, для дифференцирования вида мяса и рыбы. Метод также применяется для выявления немясных добавок (белков молока, сои, яиц) в мясных продуктах. С помощью электрофореза в полиакриламидном геле можно охарактеризовать изменение белков в процессе созревания сыров (рис.3.5.2).
В настоящее время используют высокоэффективный капиллярный электрофорез, например, для анализа витаминов в диетических продуктах (жирорастворимых А, Е, К, Д; водорастворимых - B1, B2, B6, B12, С, никотинамида); и для определения анионов (сульфат - хлорид-, иодид-) в молочных продуктах.
3.6. Газовая хроматография
В газовой хроматографии (ГХ) в качестве ПФ используют инертный газ (азот, гелий, водород), называемый газом-носителем. Пробу подают в виде паров, неподвижной фазой служит или твердое вещество - сорбент (газо-адсорбционная хроматография) или высококипящая жидкость, нанесенная тонким слоем на твердый носитель (газожидкостная хроматография). Рассмотрим вариант газожидкостной хроматографии (ГЖХ). В качестве носителя используют кизельгур (диатомит) - разновидность гидратированного силикагеля, часто его обрабатывают реагентами, которые переводят группы Si-OH в группы Si-О-Si(CH3)3, что повышает инертность носителя по отношению к растворителям. Таковыми являются, например, носители “хромосорб W” и “газохромQ”. Кроме того, используют стеклянные микрошарики, тефлон и другие материалы.
Неподвижную жидкую фазу наносят на твердый носитель. Эффективность разделения в газожидкостной хроматографии зависит главным образом от правильности выбора жидкой фазы. При этом полезным оказалось старое правило: “подобное растворяется в подобном”. В соответствии с этим правилом для разделения смеси двух веществ выбирают жидкую фазу, близкую по химической природе одному из компонентов. Подготовленный носитель помещают в спиральные колонки, имеющие диаметр 2 - 6 мм и длину до 20 м (набивные колонки). С 1957 года стали применять предложенные Голеем капиллярные колонки, имеющие диаметр 0,2 - 0,3 мм и длину в несколько десятков метров. В случае капиллярных колонок жидкая фаза наносится непосредственно на стенку этого капилляра, которая выполняет роль носителя. Применение капиллярных колонок способствует повышению чувствительности и эффективности разделения многокомпонентных смесей.
Рис.3.6.1. Блок-схема газового хроматографа.Анализ методом ГХ выполняют на газовом хроматографе, принципиальная схема которого приведена на рис. 3.6.1.
Газ - носитель из баллона 1 с постоянной скоростью пропускают через хроматографическую систему. Пробу вводят микрошприцем в дозатор 2, который нагрет до температуры, необходимой для полного испарения хроматографируемого вещества. Пары анализируемой смеси захватываются потоком газа - носителя и поступают в хроматографическую колонку, температура которой поддерживается на требуемом для проведения анализа уровне (она может быть неизменной, или по необходимости меняться в заданном режиме). В колонке анализируемая смесь делится на компоненты, которые поочередно поступают в детектор. Сигнал детектора фиксируется регистратором (в виде пиков) и обрабатывается вычислительным интегратором.
В ГХ используют детекторы, которые преобразуют в электрический сигнал изменения физических или физико-химических свойств газового потока, выходящего из колонки, по сравнению с чистым газом - носителем. Существует множество детекторов, однако широкое применение находят только те из них, которые обладают высокой чувствительностью и универсальностью. К таким относятся: катарометр (детектор по теплопроводности); пламенно-ионизационный детектор (ПИД), в котором водородное пламя служит источником ионизации органического соединения; детектор электронного захвата (ЭЗД); термоионный детектор (ТИД), который обладает высокой селективностью к органическим веществам, содержащим фосфор, азот и серу. Интерес к этому детектору заметно возрос в связи с заменой хлорсодержащих пестицидов на фосфорсодержащие ядохимикаты, используемые в сельском хозяйстве и попадающие затем в пищевые продукты.
Катарометр позволяет определить концентрации веществ в пределах 0,1 - 0,01%, ПИД - 10-3 - 10-5%”; ЭЗД - 10-6 - 10-10%. Современные детекторы позволяют определять даже пикограммы (10-12 г) вещества в пробе.
Качественный и количественный анализ в методе ГХ проводят так же, как и в ВЖХ.
Газожидкостная хроматография находит широкое применение для разделения, идентификации и количественного определения сложных многокомпонентных систем, таких как нефть, биологические жидкости, пищевые продукты, парфюмерно-косметические изделия и многие другие. Метод отличается высокой чувствительностью, экспрессностью; для анализа не требуется большого количества исследуемого образца.