Zn(OH)2 + 2НСl = ZnСl2 + 2Н2О
а при взаимодействии с гидроксидом натрия — цинкат натрия:
Zn(OH)2 + 2NaOH = Na2ZnО2+ 2Н2О
Гидроксиды, обладающие этим свойством, называются амфотерными гидроксидами или амфотерными электролитами. К таким гидроксидам, кроме гидроксида цинка, относятся гидроксиды алюминия, хрома и некоторые другие.
Явление амфотерности объясняется тем, что в молекулах амфотерных электролитов прочность связи между металлом и кислородом незначительно отличается от прочности связи между кислородом и водородом. Диссоциация таких молекул возможна, следовательно, по местам обеих этих связей. Если обозначить амфотерный электролит формулой ROH, то его диссоциацию можно выразить схемой
Н+ + RO- ↔ ROH↔R+ + OH-
Таким образом, в растворе амфотерного электролита существует сложное равновесие, в котором участвуют продукты диссоциации как по типу кислоты, так и по типу основания.
Явление амфотерности наблюдается также среди некоторых органических соединений. Важную роль оно играет в биологической химии; например, белки — амфотерные электролиты.
Соли. Соли можно определить как электролиты, которые при растворении в воде диссоциируют, отщепляя положительные ионы, отличные от ионов водорода, и отрицательные ионы, отличные от гидроксид-ионов. Таких ионов, которые были бы общими для водных растворов всех солей, нет; поэтому соли и не обладают общими свойствами. Как правило, соли хорошо диссоциируют, и тем лучше, чем меньше заряды ионов, образующих соль.
При растворении кислых солей в растворе образуются катионы металла, сложные анионы кислотного остатка, а также ионы, являющиеся продуктами диссоциации этого сложного кислотного остатка, в том числе ионы Н+. Например, при растворении гидрокарбоната натрия диссоциация протекает согласно следующим уравнениям:
NaHCO3 = Na+ + HCO3-
HCO3-= Н+ + CO32-
При диссоциации основных солей образуются анионы кислоты и сложные катионы, состоящие из металла и гидроксогрупп. Эти сложные катионы также способны к диссоциации. Поэтому в растворе основной соли присутствуют ионы ОН-. Например, при растворении хлорида гидроксомагния диссоциации протекает согласно уравнениям:
MgOHCl = MgOH+ + Сl-
MgOH+ = Mg2+ + ОН-
Таким образом, теория электролитической диссоциации объясняет общие свойства кислот присутствием в их растворах ионов водорода, а общие свойства оснований — присутствием в их растворах гидроксид-ионов. Это объяснение не является, однако, общим. Известны химические реакции, протекающие с участием кислот и оснований, к которым теория электролитической диссоциации неприменима: В частности, кислоты и основания могут реагировать друг с другом, не будучи диссоциированы на ионы. Так, безводный хлороводород, состоящий только из молекул, легко реагирует с безводными основаниями. Кроме того, известны вещества, не имеющие в своем составе гидроксогрупп, но проявляющие свойства оснований. Например, аммиак взаимодействует с кислотами и образует соли (соли аммония), хотя в его составе нет групп ОН. Так, с хлороводородом он образует типичную соль — хлорид аммония:
NH3 + HC1 = NH4C1
Изучение подобного рода реакций, а также реакций, протекающих в неводных средах, привело к созданию более общих представлений о кислотах и основаниях. К важнейшим из современных теорий кислот и оснований принадлежит протонная теория, выдвинутая в 1923 г.
Согласно протонной теории, кислотой является донор протона, т. е. частица (молекула или ион), которая способна отдавать ион водорода — протон, а основанием — акцептор протона, т. е. частица (молекула или ион), способная присоединять протон. Соотношение между кислотой и основанием определяется схемой:
Основание + Протон ↔ Кислота
Связанные этим соотношением основание и кислота называются сопряженными. Например, ион HSO4-является основанием, сопряженным кислоте H2SO4.
Реакцию между кислотой и основанием протонная теория представляет схемой:
(Кислота)1 + (Основание)2 = (Кислота)2 + (Основание)1
Например, в реакции
HC1 + NH3 = NH3+ + Сl-
ион Сl-— основание, сопряженное кислоте НС1, а ион NH3+ — кислота, сопряженная основанию NH3.
Существенным в протонной теории является то положение, что вещество проявляет себя как кислота или как основание в зависимости от того, с каким другим веществом оно вступает в реакцию. Важнейшим фактором при этом является энергия связи вещества с протоном. Так, в ряду NH3— Н2О— HF эта энергия максимальна для NH3 и минимальна для HF. Поэтому в смеси с NH3 вода функционирует как кислота, а в смеси с HF — как основание:
NH3 + Н2О = NH4+ + ОН-
HF + Н2О = F- + Н3О+
2.6 Ионно-молекулярные уравнения
При нейтрализации любой сильной кислоты любым сильным основанием на каждый моль образующейся воды выделяется около 57,6 кДж теплоты:
НСl + NaOH = NaCl + H2O+ 57,53 кДж
НNO3 + КОН = КNO3 + H2O+57,61 кДж
Это говорит о том, что подобные реакции сводятся к одному процессу. Уравнение этого процесса мы получим, если рассмотрим подробнее одну из приведенных реакций, например, первую. Перепишем ее уравнение, записывая сильные электролиты в ионной форме, поскольку они существуют в растворе в виде ионов, а слабые— в молекулярной, поскольку они находятся в растворе преимущественно в виде молекул (вода — очень слабый электролит):
Н+ + Cl- + Na+ + ОН- = Na+ + Cl- + H2O
Рассматривая получившееся уравнение, видим, что в ходе реакции ионы Na+ и Cl- не претерпели изменений. Поэтому перепишем уравнение еще раз, исключив эти ионы из обеих частей уравнения. Получим:
Н+ + ОН- = H2O
Таким образом, реакции нейтрализации любой сильной кислоты любым сильным основанием сводятся к одному и тому же процессу - к образованию молекул воды из ионов водорода и гидроксид-ионов. Ясно, что тепловые эффекты этих реакций тоже должны быть одинаковы.
Строго говоря, реакция образования воды из ионов обратима, что можно выразить уравнением
Н+ + ОН- ↔ H2O
Однако, как мы увидим ниже, вода — очень слабый электролит, и диссоциирует лишь в ничтожно малой степени. Иначе говоря, равновесие между молекулами воды и ионами сильно смещено в сторону образования молекул. Поэтому практически реакция нейтрализации сильной кислоты сильным основанием протекает до конца.
При смешивании раствора какой-либо соли серебра с соляной кислотой или с раствором любой ее соли всегда образуется характерный белый творожистый осадок хлорида серебра:
AgNO3+ НС1 = AgCl↓ + HNO3
Ag2SO4 + CuCl2 = 2AgCl↓ + CuSO4
Подобные реакции также сводятся к одному процессу. Для того чтобы получить его ионно-молекулярное уравнение, перепишем, например, уравнение первой реакции, записывая сильные электролиты, как и в предыдущем примере, в ионной форме, а вещество, находящееся в осадке, в молекулярной:
Ag+ + NO3- + Н+ + С1- = AgCl↓+ Н+ + NO3-
Как видно, ионы Н+ и NO3- не претерпевают изменений в ходе реакции. Поэтому исключим их и перепишем уравнение еще раз:
Ag+ + С1- = AgCl↓
Это и есть ионно-молекулярное уравнение рассматриваемого процесса.
Здесь также надо иметь в виду, что осадок хлорида серебра находится в равновесии с ионами Ag+и С1- в растворе, так что процесс, выраженный последним уравнением, обратим:
Ag+ + С1- ↔ AgCl↓
Однако, вследствие малой растворимости хлорида серебра, это равновесие очень сильно смещено вправо. Поэтому можно считать, что реакция образования AgCl из ионов практически доходит до конца.
Образование осадка AgCl будет наблюдаться всегда, когда в одном растворе окажутся в значительной концентрации ионы Ag+и С1- .Поэтому с помощью ионов серебра можно обнаружить присутствие в растворе ионов С1- и, обратно, с помощью хлорид-ионов — присутствие ионов серебра; ион С1- может служить реактивом на ион Ag+ , а ион Ag+ — реактивом на ион С1.
В дальнейшем мы будем широко пользоваться ионно-молекулярной формой записи уравнений реакций с участием электролитов.
Для составления ионно-молекулярных уравнений надо знать, какие соли растворимы в воде и какие практически нерастворимы. Общая характеристика растворимости в воде важнейших солей приведена в табл.2.
Ионно-молекулярные уравнения помогают понять особенности протекания реакций между электролитами. Рассмотрим в качестве примера несколько реакций, протекающих с участием слабых кислот и оснований.
Таблица 2. Растворимость важнейших солей в воде
Анионы и катионы | Растворимость солей |
NO3-Cl-SO42-CO32-PO43-Na+, K+, NН4+ | Растворимы все солиРастворимы все соли, кроме AgCl, CuCl, PbCl2 и Hg2Cl2Растворимы все соли, кроме BaSO4, SrSO4 и PbSO4; малорастворим СаSO4Из средних солей растворимы только соли натрия, калия и аммонияТо жеРастворимы почти все соли |
Как уже говорилось, нейтрализация любой сильной кислоты любым сильным основанием сопровождается одним и тем же тепловым эффектом, так как она сводится к одному и тому же процессу — образованию молекул воды из ионов водорода и гидроксид-иона. Однако при нейтрализации сильной кислоты слабым основанием, слабой кислоты сильным или слабым основанием тепловые эффекты различны. Напишем ионно-молекулярные уравнения подобных реакций.