Смекни!
smekni.com

Электрохимический синтез низкоплотных углеродных материалов для очистки воды (стр. 2 из 3)

Результаты, полученные методом ЦПДК, были подтверждены потенциостатическим синтезом СВГ с оценкой свойств получаемых соединений методом РФА и термообработкой с определением насыпной плотности ТРГ. Синтез проводился в специальной ячейке, позволяющей регистрировать изменение толщины графитового слоя в ходе эксперимента.

Анодная обработка графита в 13,5М растворе HN03 при потенциалах <1, ЗВ не приводит к образованию СВГ, окисленный графит не терморасширяется при ТО (900 С), РФА обнаруживает набор пиков, характерных для исходного графита. В интервале потенциалов 1,34-1,6 В процесс интеркалирования графитовой матрицы протекает с весьма малой скоростью.

Причем, согласно РФА возможно образование лишь высших ступеней СВГ, которые в 13,5 М быстро частично или полностью гидролизуются.

Так, для образца ГСМ-1 после обработки при 1,5В в течение 20 часов дифрактограммы обнаруживают следы IV ступени нитрата графита, гидролизованное СВГ и остаточный графит. Полученные образцы способны к незначительному терморасширению.

При Е>1,6В скорость анодных процессов значительно возрастает. Спад тока на потенциостатических кривых (ПСК) обусловлен заряжением двойного электрического слоя и окислением ПФГ. Дальнейший ход кривых характеризуется наличием ряда перегибов, после чего ток во времени практически перестает изменяться. Кривые изменения толщины графитового слоя коррелируют с ПСК. Быстрому спаду тока соответствует нулевое и в ряде случаев отрицательное изменение толщины графитового слоя, что свидетельствует о протекании в этот промежуток времени лишь поверхностных электродных реакций. Следовательно, нами экспериментально показано наличие индукционного периода (ИП), предшествующего процессу внедрения и заключающегося в оcновном в изменении состава ПФГ на поверхности графита. Затем отмечается наиболее интенсивное увеличение толщины слоя графита, которое постепенно замедляется. Подобное увеличение толщины графитового слоя вызвано объемными реакциями интеркалирования, скорость которых по мере нарастания диффузионных затруднений при перемещении интеркалата вглубь графитовых кластеров падает. По завершении процесса интеркалации, когда прекращается увеличение объема графитового анода, на потенциостатических кривых продолжается регистрация токов, которые могут быть либо вызваны переокислением образовавшихся СВГ, либо связаны с поверхностными реакциями.

Ведение анодной поляризации графита в более равновесных условиях способствует наиболее полному заполнению межслоевых пространств графитовой матрицы (большее увеличение толщины графитового слоя). Синтез при потенциале 2,1 В (кривая 2, рис.3), наряду с ускорением процессов интеркалирования, стимулирует протекание поверхностных реакций 1-3, что должно вызывать уплотнение графитового слоя. Кроме того, в этих условиях можно прогнозировать меньшее количество воды в составе интеркалата. Способность синтезированных соединений к терморасширению зависит от значения Еа и определяется пропущенным количеством электричества (Q) через углеродный материал. С увеличением Q закономерно снижается, затем вновь отмечается ее возрастание. Это вызвано увеличением дефектности графитовой матрицы из-за реакций, что при последующей ТО снижает степень терморасширения СВГ. Оценивая зависимость Q - Е" как стационарную поляризационную кривую суммарного электродного процесса, можно выделить три основных области потенциалов. В области I (до 1,5В) процессы электрохимического внедрения отсутствуют, доминируют обратимые реакции окисления ПФГ. Даже длительная анодная обработка графита (20 часов) при Еа=1, ЗВ не приводит к увеличению толщины графитового слоя в ходе электролиза и образованию ТРСГ. При Еа=1,5В за то же время удается синтезировать образцы с К до 20-30. Следовательно, пороговый потенциал образования СВГ для 13,5М HN03 находится в пределах 1,4-1,5В. В области II преимущественно протекают процессы электрохимического внедрения, сопровождающиеся гидролизом.

В области III ход поляризационной кривой выявляет новый электродный графитового слоя с разбавлением раствора кислоты отмечается сокращение времени ИП. Это подтверждает предположения о природе реакций в ИП. Более того, появление перегибов на ПСК подтверждает более легкое совнедрение молекул воды в составе интеркалата. Наименьший подъем поршня при использовании 3,7 М HN03 обусловлен меньшей степенью заполнения графитовой матрицы, что подтверждается и результатами оценки терморасширяющихся свойств синтезированных соединений.

Вероятно, именно при потенциалах 1,6+1,7 В в исследуемом электролите становится возможной диссоциативная адсорбция воды, которая обеспечивает протекание реакции 5 и одновременно является началом процесса выделения кислорода. Последний визуально регистрируется лишь при Е>2,1 В. В интервале потенциалов 1,7-5-2,3 В высока вероятность нахождения кислорода на поверхности графита в атомарном состоянии, который может химически взаимодействовать с ПФГ или углеродом. Не исключено каталитическое влияние кислородсодержащих ПФГ и особенно атомарного водорода на процесс электрохимического интеркалирования. Их наличие на планарных сетках углерода должно приводить к деформации и частичной локализации свободных электронов углерода, то есть к фактическому увеличению положительного заряда графитовых слоев.

Согласно приведенной схеме образования терморасширяющихся соединений графита с Н3 гидролиз или совнедрение Н20 приводит к электрохимической необратимости получаемых структур внедрения, в отличие от СВГ, синтезируемых в концентрированных растворах. Выдвинутые предположения согласуются с литературными данными по системе графит.

Аналогичный комплекс исследований был выполнен для растворов HN03 с меньшим содержанием кислоты (8,0; 6,6; 3,7 М). Снижение концентрации электролита приводит к закономерному смещению порогового потенциала внедрения в положительную область, а потенциала начала выделения 02 - в отрицательную, в результате чего интервал потенциалов интеркалирования графита HN03 с последующим гидролизом сужается. В 8,0-3,0 М растворах процесс образования терморасширяющихся соединений, по нашим предположениям, осуществляется преимущественно по реакции.

Вид ПСК для исследуемых электролитов, по сравнению с 13,5 М HN3 изменяется. Кривые характеризуются появлением в начальный период синтеза дополнительной ступени тока. В целом закономерности по влиянию Q на степень терморасширения сохраняются, При избыточном сообщении Q также наблюдается увеличение дефектности графитовой матрицы, что вызывает повышение r. Снижение концентрации HN03 до 7-8 моль/л при тех же затратах Q, что и в 13 М растворах, позволяет синтезировать СВГ. При этом скорость процессов внедрения заметно возрастает и синтез можно завершить за 15-20 минут. Проведенный эксперимент показывает, что ведение анодного интеркалирования графита целесообразно осуществлять в режиме одновременного совнедрения кислоты и НО, то есть при Е, близких к потенциалу выделения молекулярного кислорода и в растворах, содержащих до 50-7-60% НО.

Согласно литературным данным, окись графита по сравнению с другими СВГ обладает наивысшей степенью терморасширения и характеризуется снижением температуры ТО. Промышленно получаемые СВГ образуют углеродные пеноструктуры при 600-900°С, их модификацией органическими соединениями, в частности уксусной кислотой, удается понизить температуру ТО до 200-300°С, При условии, что в электрохимическом синтезе терморасширяющихся СВГ с HN03 из неконцентрированных электролитов образуются переходные формы между НГ и ОГ, целесообразно, максимально насыщая получаемые соединения кислородом и НО, получать продукт с пониженной температурой ТО в одну стадию. В настоящей работе предпринята попытка электрохимического получения подобных соединений,

Экспериментально установлено, что в 13,5М HN03 образование СВГ с пониженной температурой ТО (250°С) обеспечивается длительной обработкой графита в области потенциала 1,7 В с сообщением Q до 250-300 мА/г. Обнаруженная область потенциалов совпадает с началом процессов образования кислорода на поверхности графита и совнедрения Н20 по реакции. То есть возможность получения низкотемпературных терморасширяющихся соединений графита (Н) связана с участием Н20 в поверхностных и объемных реакциях. РФА для Н, по сравнению с результатами, приведенными выше, обнаруживает единственный широкий пик при 2 и 28°. Полученные результаты свидетельствуют, что при анодной обработке графита в неконцентрированных растворах HN03 действительно образуется ряд нестехиометрических переходных форм С, которые по своим свойствам, по мере накопления Q, приближаются к свойствам О. Эксперименты, выполненные по синтезу Н, на начальном этапе носят эпизодический характер, но представляют большой научный и практический интерес.

Выполненные исследования подтверждают широкие возможности электрохимического способа и могут служить основой для разработки эффективной технологии анодного синтеза терморасширяющихся соединений графита с заданными свойствами.

Глава 4 посвящена исследованию возможности применения ТРГ и материалов на его основе в процессах водоочистки и водоподготовки. Известно, что углеродные материалы помимо адсорбционных свойств, в зависимости от состояния поверхности, могут являться анионо- или катионообменниками, например по реакциям.

Согласно классическим представлениям, графит, в связи с химической адсорбцией на его поверхности кислорода воздуха, в водных растворах имеет положительный потенциал за счет миграции в электролит гидроксильных групп. При длительной анодной поляризации графита на его поверхности преимущественно накапливаются ПФГ кислотного характера, и углеродный материал приобретает катионообменные свойства. При ТО (>230°С) анодно окисленного графита с целью получения ТРГ согласно ДСК удаляются не только интеркалат, но и все поверхностные группы. Следовательно, свойства поверхности ТРГ будут примерно такими же, как у исходного графита, отличительными признаками являются многократно увеличенная поверхность, а также значительно возросшая концентрация дефектов и атомов углерода с некомпенсированными связями. Предполагаемые изменения химии поверхности графита при его переводе в ТРГ подтверждаются потенциометрическими измерениями. Стационарные значения потенциалов исходного графита и ТРГ практически одинаковы, для образцов ТРСГ более положительны, причем Ест сдвигается в положительную область с ростом Q при анодной обработке исходного углеродного материала.