Технологическая схема получения этиленгликоля гидратацией окиси этилена
Процесс проводят без катализаторов при температуре 200°С под давлением, обеспечивающим сохранение смеси в жидком состоянии. Исходную шихту готовят из свежего и оборотного водного конденсата и оксида этилена, причем концентрация оксида 12—14% (масс.), что соответствует примерно 115-кратному мольному избытку воды по отношению к α-оксиду.
Оксид этилена, свежий и оборотный конденсат подают под давлением в смеситель 1 и затем в паровой подогреватель 2. Там шихта нагревается до 130—150°С и поступает в реактор 3 адиабатического типа. Смесь проходит вначале по нейтральной трубе аппарата и дополнительно подогревается горячей реакционной массой, находящейся в объеме реактора, где и протекает образование продуктов. Кроме этиленгликоля, ди- и триэтиленгликоля, побочно получаются ацетальдеги (за счет изомеризации оксида этилена) и продукты его уплотнения. По выходе из реактора жидкость, нагретую до 200°С, дросселируют до атмосферного давления, причем часть воды испаряется, а жидкость охлаждается до 105—110°С.
Смесь поступает в аппарат 4, являющийся первой ступенью многокорпусной выпарной установки, следующие ступени которой работают при все более глубоком вакууме (вплоть до 133 Па) и обогреваются за счет сокового пара с предыдущей стадии [на схеме показана, кроме первой (в аппарате 4), только последняя ступень выпаривания аппарате 5]. Выходящую из аппарата 5 кубовую жидкость для отделения остатков воды подвергают ректификации ввакуумной колонне 7, причем все водные конденсаты объединяют и возвращают на приготовление исходной шихты и затем на реакцию. Смесь гликолей из колонны 7 поступает в вакуумную колонну 8, где отгоняют достаточно чистый этиленгликоль, а в кубе остается смесь ди- и триэтиленгликоля. Эти продукты также представляют большую ценность, и их разделяют на дополнительной вакуум-ректификационной установке.
Рисунок 1.
Технологическая схема получения этиленгликоля
1 – смеситель; 2 – паровой подогреватель; 3 – реактор; 4, 5 – выпарные аппараты; 6 – конденсатор; 7,8 – ректификационные колонны.
Реакционный узел
Реакция производства этиленгликолей и диэтиленгликоля осуществляется при большом избытке второго реагента (т. е. при недостатке α-оксида), Теплота реакции воспринимается избыточным реагентом, за счет чего температура реакционной массы повышается всего на 40 — 50° С. Это дает возможность осуществлять процесс в адиабатических и полностью гомогенных условиях, т. е. с заранее приготовленным раствором α-оксида в воде или спирте. Для поддержания реакционной массы в жидком состоянии при 150 — 200 °С необходимо давление ≈ 2 МПа.
Для таких процессов используют непрерывно действующие реакционные колонны, не имеющие поверхностей теплообмена (рисунок 2). Исходная смесь, предварительно подогретая паром, подается сверху и поступает в низ колонны по центральной трубе, в которой она подогревается реакционной массой. Продукты реакции выходят сверху. Время контакта при получении гликолей в отсутствие катализаторов составляет 20 — 30 минут, что обусловливает наличие в таких аппаратах значительного продольного перемешивания, снижающего селективность.
Для непрерывного осуществления таких реакций, но в более интенсифицированном режиме (синтез гликолей при катализе фосфорной кислотой, получение этаноламинов под давлением), наиболее подходят кожухотрубные реакторы (рисунок 3). В них обратное перемешивание незначительно, и процесс протекает с более высокой селективностью.
Рисунок 2.
Адиабатический реактор
Рисунок 3.
Кожухотрубный реактор
Технологическая схема совместного получения этиленгликоля и окиси этилена в стационарном слое катализатора
В трубчатый реакционный аппарат 2 подают смесь этилена, оборотного газа и кислорода. Тепло экзотермической реакции окисления этилена отбирается кипящим в межтрубном пространстве аппарата 2 теплоносителем. Тепло конденсации паров теплоносителя используется в котле-утилизаторе 1 для получения водяного пара.
Продукты реакции из нижней части реактора 2 через теплообменник 8 поступают в абсорбер 5, где окись этилена поглощается водой. Непоглощенные газы компримируют и разделяют на три потока: один поток возвращают в реактор 2, другой направляют в колонну 3 через абсорбер 4 для отгонки СО2 и третий выводят из производственного цикла. Благодаря этому в системе поддерживается высокая концентрация этилена и предотвращается накопление в газах инертных примесей, главным образом двуокиси углерода.
Из нижней части абсорбера 5 водный раствор окиси этилена через теплообменник 8 направляют в колонный аппарат 9, где окись этилена отгоняют от воды, возвращаемой в абсорбер для абсорбции окиси этилена. В колонне 10 окись этилена отделяют от легколетучих примесей (СО2, N2, С2Н4) и либо направляют на обезвоживание в колонну 12 для получения товарной окиси этилена, либо подвергают гидратации в этиленгликоли (реактор 11); последние концентрируют в аппарате 13 и разделяют в колонне 14.
Рисунок 4
Технологическая схема совместного производства окиси этилена и этиленгликолей:
1 — котел-утилизатор; 2 — реактор; 3 — колонна для отгонки СО2; 4 — абсорбер СО2; 5 — абсорбер окиси этилена; б — компрессор; 7—холодильник; 3 — теплообменник; 9 — колонна для отгонки окиси этилена; 10 — колонна для отгонки легких компонентов; 11 — реактор для синтеза гликолей; 12 — колонии для обезвоживания окиси этилена; 13 — дегидрагатор; 14 — гликолевая колонна.
Применение этиленгликоля
При отщеплении молекулы воды от этиленгликоля путем его нагревания в присутствии водоотнимающих средств должна была бы образоваться окись этилена. Однако практически в зависимости от условий реакции (катализатор, температура) образуются полигликоли, а также диоксан или ацетальдегид.
При нитровании этиленгликоля концентрированной азотной кислотой в присутствии концентрированной серной кислоты образуется динитрат гликоляпо взрывчатым свойствам равноценный нитроглицерину. На основе динитрата гликоля изготовляют динамиты, замерзающие при низкой температуре (—23°С). В качестве взрывчатых веществ применяют также продукты нитрования диэтиленгликоля альдегидами и кетонами этиленгликоль вступает в реакции, характерные для соединений, содержащих гидроксильную группу. Например, с ацетальдегидом он образует 2-метил-1, 3-диоксолан.
С двухосновными кислотами этиленгликоль образует линейные высокомолекулярные полиэфиры. Такие полиэфиры применяются как пленкообразующие вещества для лаков и красок, и особенно для производства синтетических волокон. Так, из этиленгликоля и диметилового эфира терефталевой кислоты получают полиэтилентерефталаты, из которых изготовляется волокно лавсан.
Будучи весьма гигроскопичным, этиленгликоль в то же время хорошо растворяет смолы, красители и некоторые вещества растительного происхождения. Благодаря сочетанию этих свойств этиленгликоль применяется при крашении тканей, в ситцепечатании, для приготовления штемпельных красок и косметических препаратов, для увлажнения табака и т. д. Так же этиленгликоль с успехом применяется для приготовления антифризов.
Список литературы:
1. Краткая химическая энциклопедия. Ред. кол. И.Л. Кнунянц (отв. ред) и др., т. 5 – М.. «Советская энциклопедия». 1961.
2. Лебедев Н. Н. Химия и технология основного органического и нефтехимического синтеза. 3-е изд., перераб. – М.: Химия, 1981 г. – 608с.
3. Писаренко А. П., Хавин З. Я. Курс органической химии. Учебник для вузов. Изд 3-е, перераб. И доп. М., «Высш. Школа», 1975. – 507с.
4. Петров А. А., Бальян Х.В., Прощенко А.Т. Органическая химия: Учебник для вузов. // Под ред. Стадничука М.Д. – 5-е изд., перераб и доп. – СПб.: «Иван Федоров». 2002. – 624с.
5. Юкельсон И.И. Технология органического синтеза – М.: Химия 1968 г. – 625с.