Методы отделения и выделения следов элементов
Немногие из применяемых в колориметрии реактивов обладают достаточной избирательностью для определения элемента непосредственно в присутствии сопутствующих элементов, когда соотношения между ними и определяемым элементом неблагоприятны, как это имеет место при анализе следов. По возможности элементы, мешающие определению, «нейтрализуют» регулированием рН раствора, добавлением комплексообразующих реагентов, окислением или восстановлением до другого валентного состояния; если же такие средства не помогают, следует прибегнуть к отделению. Даже в тех случаях, когда мешающие элементы отсутствуют, часто необходимо, особенно при определении ничтожно малых количеств вещества, выделить определяемый элемент тем или иным путем так, чтобы получить его в малом объеме раствора.
В процессе разделения, очевидно, важны два фактора: полнота извлечения выделяемого вещества и степень отделения его от других веществ. Степень извлечения для данного процесса выражается отношением
где
o- количество вещества;
А в образце;
QA – выделенное количество вещества.
При желании извлечение можно выразить в процентах. Извлечение, равное 9096, иногда можно считать достаточным при анализах образцов, в которых содержание определяемого компонента составляет 0,0001–0,001% или даже 0,01%; 95%-ное извлечение обычно считают удовлетворительным, хотя всегда желательна более высокая степень извлечения.
Степень отделения вещества В определяется как величина, на которую нужно помножить первоначальное отношение В к А, чтобы получить конечное отношение:
Требуемая степень отделения, конечно, зависит от отношения В к А в в исходной пробе и от допустимого значения Qb/Qa – Если А и В одинаково чувствительны к реагенту, используемому для определения А, то для Qb/Qaдопустимо значение от 0,01 до 0,05 в зависимости от требуемой точности. Поскольку отношение o/oможет иметь значение 100 000 и более, при анализе следов может потребоваться степень отделения 10~в или даже 10~.
1.Методы осаждения, соосаждения, адсорбции и связанные с ними процессы
Все эти методы имеют общую особенность: раствор пробы подвергается такой обработке, в результате которой образуются две фазы: одна – раствор, содержащий макрокомпоненты пробы, другая – твердая фаза, которая целиком или частично состоит из определяемого вещества. Схему процесса можно представить следующим образом:
где С – фаза, содержащая макрокомпоненты пробы; с – фаза, содержащая микрокомпонент, который подлежит определению. Процессы, посредством которых можно вызвать представленное выше фазовое изменение, различны. Характерные особенности некоторых из них будут рассмотрены. Классификация процессов, принятая в дальнейшем, по общему признанию, несколько искусственна, однако цель ее состоит в том, чтобы ориентировочно разбить процессы по группам.
а. химическое осаждение и аналогичные процессы
Наиболее простой процесс заключается в осаждении следов определяемого вещества реактивом, который оставляет макрокомпоненты в растворе. Однако осаждение в его простой форме обычно не применимо, когда концентрация определяемого микрокомпонента очень низка. Даже если осадок имеет очень низкую растворимость, его определение может быть связано с трудностями, учитывая, что абсолютное количество осадка мало. Возможны и другие осложнения – образование коллоидальной суспензии или пересыщенного раствора, в котором не происходит выпадения осадка, и т.д. В связи с этим к раствору добавляют небольшое количество другого вещества, образующего с осадителем малорастворимый продукт. Осадок, образовавшийся из добавленного вещества, называют носителем – термином, который весьма точно описывает его функции.
Иногда носитель функционирует более или менее механическим путем. Так, например, когда соль алюминия добавляют к раствору четырехвалентного титана, разбавленному до такой степени, что титан не реагирует даже с тимолом, а затем осаждают алюминий аммиаком, то гидроокись алюминия, выпадая в осадок, увлекает из раствора гидроокись титана, и титан можно определить колориметрически в осадке после его растворения. Этим способом можно определить количество титана порядка 1 у/л.
Носители часто требуются для осаждения сульфидов. Сульфид меди использовали в качестве носителя для молибдена, цинка, свинца, сурьмы и других металлов; сульфид свинца применяли для осаждения меди, сульфид серебра – для осаждения свинца и т.д. Иногда сульфидный носитель функционирует в основном физическим путем, но часто имеет место дополнительный эффект, обусловленный действием процессов, которые называют соосаждением. Например, между носителем и осадком следов вещества могут образоваться смешанные кристаллы. Кроме того, носитель может способствовать осаждению микрокомпонента из его перенасыщенного раствора.
Полнота выделения данного металла путем сульфидного осаждения, естественно, зависит в значительной степени от растворимости его сульфида, особенно если носитель не образует смешанных кристаллов с осаждаемым сульфидом.
Сульфид свинца, который имеет произведение растворимости 3,4–10», нельзя осадить количественно из кислого раствора даже в том случае, если используется такой носитель, как сульфид серебра. Можно вычислить, что ионная растворимость сульфида свинца в 1 н. кислом растворе, насыщенном сероводородом, составляет 3–10 М, что соответствует около 6 мг/л РЬ\ В 0,1 н. растворе кислоты, насыщенном сероводородом, расчетная растворимость Рh равна 0,06 мг/л; это все же довольно большая величина с точки зрения аналитика, определяющего следы веществ. В действительности кажущаяся растворимость может быть больше, чем указывают вычисления, потому что в сульфидной системе металл – водород равновесие устанавливается медленно. Одна из функций носителя состоит в том, чтобы ускорять достижение равновесия. Тем не менее, при осаждении следов сульфидов рекомендуется перед фильтрованием дать постоять раствору в течение ночи; кроме того, кислотность раствора должна быть не выше, чем необходимо для удержания других металлов в растворе.
Другая причина, предостерегающая от переоценки значений растворимостей, вычисленных из произведений растворимости, заключается в том, что определяемый металл может присутствовать в иных, чем простая ионная, формах. Так, например, установлено, что растворимость ртути в 1 Мхлорной кислоте, насыщенной сероводородом, благодаря образованию HoHgS, равна 3–10 М. Даже если никакого комплексного сульфида не образуется, несомненно, что в растворе будет присутствовать некоторое количество металла в виде молекулярного сульфида, концентрация которого вполне может превосходить ионную концентрацию, когда последняя очень мала. Применение носителя позволяет преодолеть ограничения, связанные с растворимостью при осаждении ртути. Из 1 лраствора осаждением сероводородом в присутствии меди можно выделить такие количества ртути, как 0,02 у. Иногда слаборастворимые металлоорганические комплексы используют для осаждения следов других металлов, образующих нерастворимые соединения с тем же самым реагентом. Следы циркония, ванадия и титана, встречающиеся в минеральных водах, можно количественно выделить с осадком купферроната железа, образующегося при добавлении купферрона. 8-Оксихинолин также был использован для осаждения следов различных металлов с хинолятами железа или алюминия в качестве носителей.
Иногда при осаждении следов вещества носителем происходит образование соединения. Так, например, гидроокись железа легко осаждает мышьяк и фосфор в виде малорастворимых арсенита, арсената и фосфата железа. Осаждение микроэлемента может быть более полным, чем это следует из растворимости образовавшихся соединений, благодаря тому, например, что происходит сильная адсорбция арсената железа гидроокисью железа. Другой случай образования соединения при осаждении встречается при использовании теллура в качестве носителя для золота, платины и палладия. Эти металлы количественно осаждаются, когда к раствору их солей, содержащему небольшое количество теллурита щелочного металла, добавляют такие восстановители, как сернистую кислоту или хлорид олова. Вероятно, благородные металлы образуют теллуриды при этих условиях и осаждаются в таком виде с восстановленным теллуром. Однако осаждение этих металлов было бы, несомненно, не менее полным, если бы никакого образования соединения не происходило и восстановленные металлы действовали бы просто как кристаллизационные центры для элементарного теллура.
Выбор носителя предопределяется рядом факторов, главным из которых, естественно, является способность носителя осаждать следы вещества достаточно полно. Хорошим носителем считается тот, который при использовании даже в малом количестве полностью захватывает следы определяемого элемента. Ограничение количества носителя часто имеет значение, так как с ним в большей или меньшей степени могут соосаждаться другие вещества, присутствующие в растворе, что приводит к осложнениям при определении искомого вещества. Эффективный носитель можно использовать в минимальных количествах и таким образом уменьшить соосаждение нежелательных компонентов до количества, не представляющего опасности. Предпочтение, конечно, отдается носителю, избирательному в своем действии, но это случай скорее идеальный: в действительности полностью избирательный носитель почти не встречается. В этом отношении удовлетворительны носители, механизм действия которых связан с образованием смешанных кристаллов. Носитель должен быть веществом, которое не мешает конечному определению микрокомпонента. Если это условие не выполнимо, носитель должен быть легколетучим, чтобы его можно было удалить после проведения соосаждения. В этом отношении удобны сульфиды ртути и мышьяка, применяемые для осаждения сульфидов тяжелых металлов; то же самое справедливо для теллура, который используют для выделения благородных металлов.