Смекни!
smekni.com

Научные основы технологии и оборудования гранулирования активных масс и формования положительных электродов литиевых источников тока (стр. 3 из 6)

Во второй главе описаны результаты комплексных исследований процессов сушки и гранулирования угольной, диоксидномарганцевой и оксидномедной активных масс (УАМ, ДМАМ и ОМАМ).

Сухая УАМ содержала технический углерод (чаще сажу ПМЭ-ЮОВ) и фторопластовое связующее - суспензию Ф-4Д в количестве 8...10% (по сухому веществу). ДМАМ содержала: порошок MnO (84...85%), технический углерод (9...10%) и Ф-4Д (5...6%). Состав ОМАМ: технический углерод (5...10%), Ф-4Д (5...10%), порошок СиО (85...87%).

После смешения компонентов AM представляет собой пасту высокой влажности. Поэтому при получении гранул AM неизбежна операция обезвоживания. Сушка на поддонах и в промышленных сушилках конвейерного типа неэффективна. Сушилки с высокой скоростью теплоносителя, например, распылительные сушилки, сушилки с кипящим слоем и с наклонными перфорированными полками обладают высокой производительностью, но одновременно измельчают AM до размеров частиц менее 1...3 мм. Измельченная AM склонна к пылению, слеживанию, зависанию в бункерах подачи, высоки потери массы. Кроме этого, установлено, что переработка AM, сопровождающаяся измельчением или значительными сдвиговыми деформациями, приводит к разрушению трехмерной структуры, формирующейся в процессе влажного смешения компонентов, разрывам связи между частицами. Это значительно снижает обезвоживания и гранулирования рассматриваются как единое целое: каждая из параллельных (совмещенных) или последовательных операций одновременно должны обеспечивать на всех стадиях обезвоживание AM и формирование гранул с заданными формой, размерами, структурными и физико-механическими характеристиками при максимальной эффективности совмещенного процесса; обезвоживание, как лимитирующая операция совмещенного процесса разделяется на ряд последовательных операций, в которых используются разные способы и устройства; условиями перехода от одного способа обезвоживания к другому являются удаление заданного количества влаги и достижение заданной прочности гранул; сушка осуществляется при переменном температурном режиме, причем, температура и время каждой ступени определяются электрическими и механическими характеристиками электродов; комбинация устройств обезвоживания и гранулирования, а также размеры их рабочих зон, должны полностью соответствовать порядку и продолжительности стадий обезвоживания.

Разработаны две технологические схемы сушки-гранулирования AM. Для УАМ: 1) формование гранул из водной пасты в ячейках гранулятора или на конвейерной ленте; 2) сушка на поддерживающей поверхности при температуре 150...155°С до удаления 60...70% начального количества влаги; 3) перегрузка и сушка в барабанной сушилке при 130...135°С. Для ДМАМ и ОМАМ: 1) формование пласта массы; 3) прессование пласта при давлении 2Д. .4.0 МПа; 3) нанесение. сети канавок на поверхность пласта; 4) сушка при температуре 150...155°С до удаления 40...70% начального количества влаги; 5) перегрузка и сушка в барабанной сушилке при 130...135°С.

Применение вышеизложенных принципов и разработанных технологий позволило сократить продолжительность сушки-гранулирования УАМ на 30...35%, а ДМАМ и ОМАМ на 45...50%. Уменьшены общие габариты и металлоемкость установок сушки и гранулирования (длина зоны сушки конвейерного гранулятора сокращена в 5 раз, а металлоемкость сушилки снижена в 3...4 раза).

Третья глава посвящена исследованию влияния параметров оборудования на устойчивость процесса гранулирования и синтезу конструкции грануляторов AM и их рабочих органов. Показана неэффективность грануляторов, используемых в промышленности, и сделан вывод о необходимости синтеза новых базовых конструкций грануляторов AM ЛИТ.

Формование гранул из УАМ должно производиться, когда поры AM заполнены водой, и несжимаемость пасты гарантирует сохранение высокой пористости, а обезвоживание AM должно происходить без ее уплотнения. Поэтому для сушки-гранулирования УАМ разработан гранулятор конвейерного типа с ячеистой лентой и встроенной сушилкой. Размеры ячеек определяются оптимальными размерами гранул. Устойчивость процесса гранулирования зависит от формы и относительных размеров выступов, образующих ячейки ленты. Показано, что отношение ширины оснований выступов к шагу в продольном направлении должно составлять 0,5...1, а отношение шага выступов к диаметру ролика в зоне разгрузки от 0,05 до 0,2. Шаг выступов в поперечном направлении - 1...2 величины продольного шага. Ряды выступов смещены на половину продольного шага выступов. При выходе размеров за рекомендованные пределы нарушается устойчивое разделение AM на гранулы и разгрузка ячеек, при этом потери AM возрастают более чем на порядок.

Удаление избытка влаги из ДМАМ и ОМАМ может производиться прессованием. Разработаны два варианта грануляторов с прессующим устройством.

В первом грануляторе из пасты между двумя непрерывными лентами формуется пласт, который подается на прессующее устройство с параллельными плитами. Подача лент прекращается, и производится прессование пласта. Далее подача возобновляется, и верхняя лента, огибая направляющий ролик, освобождает пласт. Затем на пласт, который движется вместе со второй лентой, наносится сеть поперечных и продольных канавок. По этим канавками происходит разделение пласта на гранулы во время сушки. Плиты пресса снабжены продольными ребордами. Получены зависимости потери влаги AM от относительной высоты реборд. Суммарная высота реборд должна составлять 0,4...0,9 наименьшего расстояния между лентами во время сжатия слоя. Это обеспечивает удержание пасты в зоне прессования и удаление из неё избытка влаги. Получены уравнения для расчета ширины бункера-питателя, формующего валка и плит пресса с учетом уширения пласта при его формовании и прессовании.

При высоком содержании в пастах порошков твердых деполяризаторов в результате прессования может происходить значительное уплотнение пласта и, как следствие, снижение пластичности массы. В этом случае нанесение канавок валком поперечной резки сопровождается разрушением пласта массы с образованием трещин в теле гранул. С целью устранения таких дефектов был разработан гранулятор с формующей лентой, которая снабжена поперечными треугольными в сечении выступами. Конструкция этого гранулятора аналогична предыдущей, но разделение пласта поперечными канавками происходит до его прессования. Разделяют пласт выступы формующей ленты. Продольные канавки наносятся валком продольной резки. Шаг выступов верхней формующей ленты соответствует заданному размеру гранул. Однако он должен быть равен 1...6 величин формующего зазора, а высота выступов - 0,4...0,8 величины формующего зазора. В этих интервалах обеспечивается высокое качество гранул и удаляется максимальное количество влаги. Получено уравнение зависимости количества удаляемой при прессовании влаги от относительной высоты выступов.

Во время работы грануляторов с прессующим устройством велика вероятность налипания массы на ножи валков продольной и поперечной резки. Для масс, обладающих высокой адгезией к конструкционным сталям, разработаны узлы, обеспечивающие съем массы с ножей. Основные элементы этих узлов - бесконечные ленты, применение которых позволило исключить потери массы за счет налипания на ножи.

Грануляторы конвейерного типа предназначены для крупносерийного и массового производства. Для производства ЛИТ широкой номенклатуры малыми партиями разработаны малогабаритные дисковый и шнековый грануляторы.

Дисковый гранулятор снабжен горизонтальным вращающимся перфорированным диском. Отверстия диска заполняются активной массой, проходят через зону сушки и затем попадают в зону выгрузки. Во время сушки происходит усадка гранул, они отрываются от стенок отверстий и выпадают в окно поддерживающего прокатку широкой ленты AM, а затем разрезать её на несколько лент.

При прокатке AM в валках с рифленой рабочей поверхностью усадка лент меньше, чем при прокатке в гладких валках. Уменьшение усадки объясняется: 1) тем, что рифления валков формуют на ленте AM ребристую структуру, препятствующую усадке лент; 2) увеличением плотности лент при прокатке AM в рифленых валках.

При формовании электродов могут быть использованы установки разных конструкций, поэтому при разработке математического описания поведения лент в межвалковом пространстве были рассмотрены все варианты формующих установок.

Устройство 1 может иметь раздельные управляемые приводы вращения валков формования AM и валков накатки, либо валки могут быть кинематически связаны. В первом случае деформация лент AM компенсируется регулированием угловых скоростей формующих валков и валков накатки.

Если в устройстве валки кинематически связаны, то передаточное отношение и передачи между формующими валками и валками накатки должно влияния на передаточное отношение предельной деформации растяжения лент.

При формовании ЭЛ с помощью установки, имеющей гладкие валки и нагреватели лент в межвалковом пространстве, величина Д определяется как: