Смекни!
smekni.com

Перспективные композиты XXI века на основе органических и неорганических полимеров. Новые металлические сплавы, приоритетные технологии (стр. 4 из 5)

Измерения электропроводности МКН проводились разностным методом с использованием ячейки-«пинцета», состоящей из двух симметричных частей. Измерение сопротивления в ячейке, с раствором NaCl различной концентрации, проводили с помощью моста переменного тока Е7-13 на частоте 1 кГц.

При сравнении полученных концентрационных зависимостей электропроводностей МКН «Поликон» и промышленных ионообменных мембран МК-40 и МА-40 было обнаружено, что при концентрации NaCl>0,25М электропроводность материалов «Поликон» резко возрастает, значительно превышая электропроводность мембран. Это обусловлено значительной долей свободного раствора (f2) внутри МКН. Обработка данных в билогарифмических координатах (lgk – lgC) позволила определить величину f2 = 0,77 и f2 = 0,78 для катионообменных и анионообменных материалов «Поликон» соответственно. Полученные экспериментальные количественные характеристики доли свободного раствора в материалах «Поликон» свидетельствуют об их достаточно хорошей гидравлической проницаемости.

Таблица 3

Влияние концентрации раствора на электропроводность катионообменных МКН

Концентрация МКН «Поликон К»

С,

моль/л

lg C сопротивление раствора Rs,Oм сопротивление с МКН Rs+Rt,Oм толщина МКН L, см сопротивление МКН Rt, Ом электропроводность растворов, мСм/см электропроводность раст-воров lg k электропроводность МКН, мСм/см МКН lg k
0,062 -1,20 60,890 69,300 0,0150 8,41 1,78 0,25 1,64 0,22
0,125 -0,90 30,698 37,590 0,0200 6,892 2,90 0,46 3,26 0,51
0,25 -0,60 18,140 25,590 0,0400 7,45 5,37 0,73 5,51 0,74
0,5 -0,30 9,141 14,200 0,0400 5,059 7,91 0,90 10,94 1,04
1 0,00 4,972 8,621 0,0500 3,649 13,70 1,14 20,11 1,30
2 0,30 2,841 3,414 0,0155 0,573 27,05 1,43 35,20 1,55

Рост электропроводности МКН «Поликон» в умеренно разбавленных и концентрированных растворах дает основание предполагать, что МКН не будут увеличивать затраты электроэнергии, как, например, в случае инертных спейсеров канала обессоливания.

УДК 678.027:678.046:658.511

АЛЬТЕРНАТИВНЫЕ ТЕРМОПЛАСТИЧНЫЕ СВЯЗУЮЩИЕ

В ПРОИЗВОДСТВЕ МАГНИТОПЛАСТОВ

НА ОСНОВЕ СПЛАВА Nd-Fe-B

С.Г. Кононенко, Н.Л. Левкина, С.Е. Артеменко

Энгельсский технологический институт СГТУ

Обеспечение заданных эксплуатационных характеристик магнитопластов (МП) связано с направленным выбором вида и содержания полимерной основы, технологических приемов совмещения компонентов и переработки их в изделия.

Ранее проведенными исследованиями на кафедре химической технологии ЭТИ СГТУ доказана целесообразность применения модифицированной термореактивной основы – фенолоформальдегидной смолы в смесевом и поликонденсационном способе получения МП на основе оксидных ферритов и легированного быстрозакаленного сплава Nd-Fe-B [1-5]. К числу недостатков МП на основе фенолоформальдегидного олигомера (ФФО) можно отнести жесткость, хрупкость, обусловленные спецификой пространственного строения сшитого полимера.

Широкий комплекс требований к изделиям из МП обусловливает необходимость применения для их получения полимеров и наполнителей с определенными физико-химическими, электрическими, магнитными, физико-механическими свойствами.

Выбор полимерной основы диктуется требованиями к условиям изготовления и эксплуатации МП: вязкостью, термостабильностью, адгезионной способностью и др. Так, высокое электрическое сопротивление полимерной матрицы вызывает уменьшение потерь на вихревые токи, которые наводятся при вращении в полимерном постоянном магните.

Хотя определяющую роль в формировании эксплуатационных характеристик МП играют ферромагнитные наполнители, но в плане магнитного упорядочения под воздействием внешнего магнитного поля важна и магнитная восприимчивость молекул связующего, зависящая от молекулярной массы, природы связи, наличия заместителей [6].

Накоплен большой практический опыт использования полиамидов в технологии МП – материал «Neofer» (Германия), «Нетмаг» (г.Москва) и др., отличающихся низкой вязкостью, хорошей адгезией к металлам, эластичностью, хемо-, тепло-, износо-, ударостойкостью [7].

Для расширения и удешевления сырьевой базы МП представлялось интересным использование региональных многотоннажных технологических отходов термопластов.

Термопластичной основой служили ПА-6, кубовый остаток производства ПА-6, вторичный ПА-6, технологические отходы АБС-пластика, сравнительные прочностные характеристики которых приведены в табл. 1.

Таблица 1

Сравнительные свойства технологических отходов термопластов

Вид полимера Показатели

ПТР,

г/10 мин

sр,

МПа

eр,

%

ауд,

кДж/м2

(без надреза)

sи,

МПа

rV,

Ом×м

ПА-6 первичный 20,0-22,0 54,5 180 35-40 90-110 1012-1014
ПА-6 вторичный 38,0 170 8-10 - -
АБС-пластик марки Э-2802 0,5-1,3 53,0 30 25-30 50-100 1014-1015
АБС-пластик вторичный 0,15 27,0 3,5 16-18 - -
ФФО - 30,0-65,0 1,0 2,8-2,5 50-100 1012-1014

В качестве ферромагнитного наполнителя использовали аморфно-кристаллический быстрозакаленный легированный ниобием сплав Nd-Fe-B марки НМ-20Р с содержанием основной фазы (Nd) – 20 - 25% (ТУ 14-123-97-92). Его отличает полидисперсность (размер частиц 140 – 1250 мкм), низкие пористость (суммарный объем пор 0,135 см3/г) и удельная поверхность (150 м2/г), высокие магнитные характеристики: остаточная магнитная индукция (Br) - 0,86 – 0,91 Тл; коэрцитивная сила (Нсм) - 460 кА/м [8].

Для модификации отходов термопластов использовали смазывающие вещества – полиэтиленсилоксановую жидкость марки ПЭС-5, стеарат кальция.

Для оценки перерабатываемости термопластичной композиции, наполненной сплавом Nd-Fe-B, изучены реологические свойства на экструзионном пластометре ИИРТ при температуре 230°С при нагрузке 21,6 Н для ПА-6 и 5,0 Н для отходов АБС-пластика.

Полученные данные свидетельствуют о влиянии температуры и вида модифицирующих добавок на ПТР термопластичных композиций (см. рисунок).

Установлено, что введение пластифицирующей добавки ПЭС-5 в количестве 2% масс. ~ в 3 раза увеличивает текучесть расплава кубового остатка; однако введение стеарата кальция с температурой плавления 175°С совместно с ПЭС-5 снижает индекс расплава кубового остатка.


Рис. Влияние температуры и вида модифицирующих добавок на ПТР

кубового остатка: 1 - кубовый остаток; 2 - кубовый остаток + ПЭС-5;

3 - кубовый остаток + ПЭС-5 + стеарат кальция

Введение 70 – 80% масс. порошка сплава Nd-Fe-B в низковязкий ПА-6 ~ в 3 – 6 раз повышает вязкость композиции (табл.2). Высокая вязкость термопластичной композиции и низкое значение показателя текучести расплава высоконаполненных МП делает технологически приемлемым метод прямого прессования для изготовления изделий – магнитных сорбентов, постоянных магнитов.

Таблица 2

Влияние содержания сплава Nd-Fe-B на реологические свойства ПА-6

Состав композиции ПТР, г/10 мин Вязкость, Н×с/м2
ПА-6 22,0 282
ПА-6 + 70% Nd-Fe-B 6,0 1600
ПА-6 + 80% Nd-Fe-B 1,4 1900

В табл. 3 приведены данные ДСК технологических отходов и МП на их основе.


Таблица 3

Данные ДСК технологических отходов и МП на их основе

Состав Тнач, °С Ток, °С Тпл, °С DН, Дж/г
Кубовый остаток 43 60 55 4,4
Кубовый остаток + Nd-Fe-B 43 80 56 5,0
Отходы АБС-пластика 210 248 225 111,0
Отходы АБС-пластика + Nd-Fe-B (1 : 1) 190 240 205 171,0

Изменение теплового эффекта плавления в условиях нагрева образцов со скоростью 8°С в мин. на приборе ДСК-Д свидетельствует о различии в положении экзопиков плавления исследуемых отходов термопластов и МП на их основе. Так, наполнение отходов АБС-пластика сплавом Nd-Fe-B смещает пик плавления ~ на 20°С в область более низких температур при увеличении ~ в 3,5 раза величины теплового эффекта при взаимодействии компонентов в системе композита, что согласуется с данными ИКС [9] и адгезионными характеристиками композитов (табл. 4).

Разработанные композиты на основе ПА-6 и промышленного сплава Nd-Fe-B отличаются меньшей поверхностной твердостью, повышенной эластичностью в сочетании с высоким значением остаточной магнитной индукции (Br = 0,48 – 0,50 Тл).