Смекни!
smekni.com

Поверхностно-активные полимеры (стр. 2 из 3)

Рис. 4. Структура целлюлозы, которая была модифицирована этиленоксидом и ал кил хлоридом

Полимеры с гидрофобной основной цепью и гидрофильными боковыми цепями.

Природным продуктом этого класса являются гликопротеины, хотя полипептидную цепь, безусловно, нельзя считать полностью гидрофобной. Многие гликозилированные белки можно рассматривать как комбинацию привитых и блок-сополимеров, поскольку полипептидная цепь часто содержит гидрофильные и гидрофобные участки. Некоторые типы синтетических привитых сополимеров рассматриваемого типа приведены на рис. 5. В настоящее время большой интерес вызывают сополимеры с поли-этиленглколиевыми (ПЭГ) «хвостами». Они служат эффективными стерическими стабилизаторами для различных дисперсий. На рис. 6 представлены три способа получения ПЭГ-замещенных полиакрилатов.

Все три метода в принципе могут быть реализованы в промышленном масштабе. Этоксилированные мономеры (производные акрилатов) являются промышленно производимыми мономерами.

Как было отмечено выше, этот тип привитых сополимеров нашел применение в качестве стерических стабилизаторов дисперсий, в частности в производстве красок. Другое интересное применение этих поверхностно-активных полимеров состоит в модифицировании твердых поверхностей для предотвращения адсорбции белков и других биологических молекул. Полимеры этого типа адсорбируются с образованием монослоя на гидрофобной поверхности, причем адсорбция протекает исключительно за счет взаимодействия гидрофобной полимерной цепи с поверхностью, а цепи ПЭГ ориентируются к водной фразе. Уже установлено, что такой способ покрытия поверхности цепями ПЭГ эффективен для снижения адсорбции белков и, как следствие, снижения адгезии клеток к поверхности твердого тела. По опубликованным данным, полученным в опытах invitroи invivo, ПЭГ-покрытия заметно подавляют адсорбцию белков плазмы крови и адгезию тромбоцитов, что снижает риск тромбообразования.


Рис. 5. Некоторые полимеры с гидрофобной основной цепью и гидрофильными боковыми цепями

Рис. 6. ПЭГ-Модифицированные полиакрилаты можно получить различными путями. Верхний путь — этоксилирование полиакрилата, содержащего вдоль цепи гидроксиэтильные группы. Средний путь — реакция полиакрилата, содержащего сложноэфирные метальные группы, с монометиловым эфиром ПЭГ. Постоянное удаление метанола в течение реакции приводит к эффективной пере-этерификации. Нижний путь — полимеризация этоксилированного акрилата. Этоксилированный мономер сополимеризуется с обычными мономерами, например с акриловой или метакриловой кислотами

Инертный характер ПЭГ-модифицированных поверхностей объясняется свойствами полимера в растворе и тем, что полимер не имеет заряда. Из-за большого дипольного момента полимер сильно сольватирован водой. В то же время его гомологи полиоксиметилен и полиоксипропилен, как и его изомер полиаце-тальдегид, не растворяются в воде и поэтому не используются для получения гидрофильных привитых полимеров.

Способность ПЭГ предотвращать адсорбцию белков и других биомолекул на поверхностях можно рассматривать как эффект стерической стабилизации (рис. 7). Такой тип стабилизации обычно можно представить в виде двух вкладов: упругого и осмотического. Упругая составляющая (или ограничение объема) определяется уменьшением конформационной энтропии при сближении двух поверхностей из-за уменьшения объема, доступного для каждого полимерного сегмента. При подходе молекулы белка к поверхности, модифицированной ПЭГ, возникает сила отталкивания из-за потери конформационной свободы полиоксиэтиленовых цепей.

Осмотические взаимодействия (или взаимодействия смешения) возникают из-за повышения концентрации полимера при сжатии двух поверхностей. Когда молекула белка или любая другая большая молекула в водном растворе подходит к поверхности, число возможных конформаций сегментов ПЭГ уменьшается из-за сжатия или взаимного проникновения полимерных цепей. Кроме того, возникает отталкивание осмотической природы. Какой именно процесс будет протекать в системе (сжатие или взаимное проникновение цепей, или оба эти процесса), определяется плотностью цепей ПЭГ. При плотной прививке ПЭГ к полимерному остову преимущественно происходит сжатие, а при менее плотной прививке доминирует взаимное проникновение цепей.

Рис. 7. Отторжение белков поверхностями, модифицированными ПЭГ

Для предотвращения адсорбции белков на твердых поверхностях также весьма перспективны незаряженные полисахариды. Так, покрытие поверхностей декстранами делает их инертными, причем механизм отторжения биомолекул, по-видимому, аналогичен рассмотренному выше для ПЭГ. В то же время эти два типа полимеров по-разному реагируют на изменение температуры. ПЭГ и его производные чувствительны к температуре, вызываемая ими стерическая стабилизация ухудшается с увеличением температуры. Декстраны относительно малочувствительны к изменениям температуры.

Этоксилированные или этоксилированные и пропоксилированные феноло-формальдегидные смолы, особенно типа новолаков, нашли применение в качестве компонентов, обеспечивающих стерическую стабилизацию в покрытиях. Блок-сополимеры ЭО-ПЭО также широко используются в качестве деэмульгаторов нефтей. Алкиларильные фрагменты образуют сильно гидрофобную основную цепь, которая прочно связывается с наиболее гидрофобными поверхностями, что позволяет использовать производные с длинными гидрофильными цепями (50-100 оксиэтиленовых звеньев) без заметной десорбции полимера с поверхности. Основная полимерная цепь (алкилфенол-формальдегидный конденсат) обычно имеет относительно небольшую молекулярную массу (в пределах 1000-3000) (рис. 8).

Гребнеообразные полимеры с привитыми цепями поли(12-гидроксистеариновой кислоты) часто используются в качестве диспергаторов для неводных композиций, например красок. Низкомолекулярные цепи поли(12-гидроксистеариновой кислоты) обеспечивают стерическую стабилизацию подобно тому, как это происходит с ПЭГ в водных системах. Основная полимерная цепь содержит группы, обеспечивающие прикрепление к твердой поверхности частиц, которые должны быть диспергированы. Правильное закрепление полимера на поверхности, которое обычно базируется на кислотно-основных взаимодействиях, имеет решающее значение и определяет эффективность диспергирования. Силиконовые ПАВ представляют собой другой тип гребнеообразных полимеров с полярными боковыми цепями. Два важных представителя этого класса показаны на рис. 9.

Рис. 8. Феноло-формальдегидные этоксилированные смолы; R — небольшая алкильная цепь, обычно пропил или бутил


Рис. 9. Примеры силиконовых поверхностно-активных веществ. X— это обычно ионная или неионная полярная группа, чаще всего сополимер ЭО-ПО; иногда X— слабополярная группа, например сложноэфирная, амидная, эпоксидная и др.

Основной цепью силиконовых ПАВ практически всегда служит полидиме-тилсилоксан, который очень гидрофобен и нерастворим в воде. Поверхностную активность в водной среде ему сообщают водорастворимые заместители (заряженные или нейтральные). В качестве заместителей используют полиэтиленгликоль или сополимеры полиэтиленгликоля с полипропиленгликолем. Между атомами Si и полиэфирными цепями могут образовываться связи Si-O-C или Si - С. Связь Si-O-C возникает при этерификации хлорполисилоксанов гид-роксильными группами органических соединений, в том числе сополимера ЭО-ПО. Эта связь довольно неустойчива к гидролизу, и такие продукты не годятся для применения в кислых и щелочных средах. Связь Si-С, в которой атом углерода ЭО-ПО-сополимера непосредственно связан с атомом Si, стабильна. Такие связи образуются в процессе гидросилилирования, т. е. присоединения Si-H-группы полисилоксана по концевой олефиновой связи в присутствии платинового катализатора.

Заместитель X может иметь слабополярный характер, тогда продукт поверхностно-активен в органических средах. Для использования в неводных средах подходят только силиконовые и фторированные ПАВ.