Рис. 2 Получение капроамида
-КАПРОЛАКТАМ (гексагидро-2-азепинон, лактам e-аминокапроновой кислоты, 2-оксогексаметиленимин), молекулярная масса 113,16; бесцветные гигроскопические кристаллы, т. пл. 68,8 °С, т. кип. 262,5 °С; плотность при 70 °С 1,02 г/см3; nD70 1,4790, nD20 (50%-ный водный р-р.1,4795; vкрит 339,5.10-6 м3/моль, tкрит 750 и 805,7 К,
[8]Рис. 3 поли-е-капроамид
pкрит 47,62.105 Па; температурный коэффициент объемного расширения 0,00104 К-1 (80 90 °С); С0p при 60 и 70 °С соотв. 1,67 и 1,76 кДж/(кг.К); DH0обр -269,63 кДж/моль, DH0сгор - 3605,2 кДж/моль; S0298 1,49 Дж/(моль.К). Уравнения температурной зависимости давления пара: для твердого (308-333 К) lgp (мм рт. ст.) = 13,06 + 4,73.10-3/T, жидкого (353-413К) lgp (мм рт.ст.) = 6,78 + 2344/T; h 0,009 и 0,0047 Па.с соответственно при 78 и 100 °С; g 33,4.10-3 Н/м (130°С); теплопроводность 0,2326 Вт/(м.К); e 74 (20 °С, 20%-ный водный р-р). Капролактам хорошо растворим в воде, органических растворителях и в разбавленной H2SO4; теплота растворения в воде 35,17 Дж/кг, в концентрированной H2SO4 611,27 Дж/кг (298-305 К). По химическим свойствам Капролактам - типичный представитель лактамов. При нагревании с концентрированными минеральными кислотами образует соли; в присутствии небольших количеств воды, спиртов, аминов, карбоновых кислот при 250-260 °С полимеризуется с образованием полиамидной смолы, из которой затем получают волокно капрон (Поли-e-капроамид). В промышленности Капролактам получают из бензола, фенола или толуола по схемам:
Рис.4 Получение Капролактама [7]
В промышленности наибольшее распространение получил метод синтеза Капролактана из бензола. Технологическая схема включает гидрирование бензола в циклогексан в присутствии Pt/Al2O3 или никель-хромового катализатора при 250-350 и 130-220°С, соответственно. Жидкофазное окисление циклогексана в циклогексанон осуществляют при 140-160°С, 0,9-1,1 МПа в присутствии нафтената или стеарата Со. Получающийся в результате окисления циклогексанол превращают в циклогексанон путем дегидрирования на цинк-хромовых (360-400 °С), цинк-железных (400 °С) или медь-магниевых (260-300 °С) смешанных катализаторах. Превращение в оксим проводят действием избытка водного р-ра сульфата гидроксиламина в присутствии щелочи или NH3 при 0-100°С. Завершающая стадия синтеза Капролактама - обработка циклогексаноноксима олеумом или концентрированной H2SO4 при 60-120 °С (перегруппировка Бекмана). Выход Капролактама в расчете на бензол 66-68%. При фотохимическом методе синтеза Капролактама из бензола циклогексан подвергают фотохимическому нитрозированию в оксим под действием NOCl при УФ облучении. Метод синтеза К. из фенола включает гидрирование последнего в циклогексанол в газовой фазе над Pd/Al2O3 при 120-140°С, 1-1,5 МПа, дегидрирование полученного продукта в циклогексанон и дальнейшую обработку как в методе синтеза из бензола. Выход 86-88%. Метод синтеза К. из толуола включает: окисление толуола при 165°С в присутствии бензоата Со; гидрирование получающейся бензойной кислоты при 170°С, 1,4-1,5 МПа в присутствии 5%-ной взвеси Pd на мелкодисперсном угле; нитрозирование циклогексанкарбоновой кислоты под действием нитрозилгидросульфата (нитрозилсерной кислоты) при 75 80 °С до Капролактама-сырца. Некоторые стадии этой схемы недостаточно селективны, что приводит к необходимости сложной очистки получаемого К. Выход К. 71% в расчете на исходный продукт. Полученный любым из перечисленных методов Капролактам предварительно очищают с помощью ионообменных смол, NaClO и КМnО4, а затем перегоняют. Побочный продукт производства (NH4)2SO4 (2,5-5,2 т на 1 т К.), который используется в сельском хозяйстве в качестве минерального удобрения. [2]
Поли-е-капроамид получают главным образом гидролитической полимеризацией Капролактама, протекающей под действием воды в присутствии катализатора (серная, фосфорная, бензойная, уксусная или адипиновая кислота, гексаметиленадипинамид):
[8]Процесс проводят по периодической или непрерывной технологической схеме при 240-2700C и 1,5-2,5 МПа. Содержание в Поли-е-капроамиде низкотемпературной водорастворимой фракции (Капролактама и его олигомера) достигает 5-11%.
Анионную полимеризацию Капролактама в промышленности проводят в присутствии Na-соли К. (катализатор) и некоторых N-алкилимидов (активатор), например, N-ацетилкапролактама. Реакцияция протекает практически без индукционного периода (в отличие от гидролитич. полимеризации) при 140-2000C и нормальном давлении. Анионную полимеризацию К. проводят в формах и получают полиамидные изделия методом химического формования по схеме "мономер - изделие". Остаточное содержание мономера в Поли-е-капроамиде не превышает 1,5-2,5%, его прочность при сжатии и статическом изгибе, а также твердость в 1,5-1,6 раза выше, ударная вязкость в 3-5 раз выше, а водопоглощение в 2,5 раза ниже, чем у Поли-е-капроамида, получаемого гидролитической полимеризацией. Используя при анионной полимеризации Капролактама полифункциональные активаторы (например, толуилендиизоцианат, N-метакри-лоил-е-капролактам, N, N', N:-тримезиноил-тер-e-капролак-там и др.), получают разветвленный и частично сшитый Поли-е-капроамид, механическая прочность которого выше, чем у обычного.[1]
Определение динамических свойств полимера, их обработка позволяет оценить и количественно описать ориентацию, наведенную в процессе формования в образцах, полученных гидроэкструзией в твердой фазе. На примере гидроэкструдатов поли-е-капроамида установлено, что зависимость параметра порядка ориентации макроструктуры с изменением коэффициента экструзии в определенном диапазоне имеет характер фазового перехода. С целью определения наличия или отсутствия фазового перехода подготовлен и проведен эксперимент по определению удельной теплоемкости гидроэкструдатов поли-е-капроамида в диапазоне температур до 2300С, полученных при различных коэффициентах экструзии. Использовался метод электротеплового моста. Метод основан на нагревании двух образцов в одинаковых условиях с одинаковой скоростью, один из которых – эталон с известной удельной теплоёмкостью, другой – испытуемый образец. Проведен анализ кривых удельной теплоемкости гидроэкструдатов поли-е-капроамида от коэффициента экструзии. Отмечен сдвиг пика удельной теплоемкости в области температур Т=74-760С. Полученные экспериментальные данные показали, что характер изменения удельной теплоемкости образцов зависит от коэффициента экструзии, однако пока преждевременно говорить о том, что с изменением коэффициента экструзии в материале имеет место фазовый переход.[7]
Применение поли-е-капроамида:
Поли-е-капроамид применяют для производства волокон, а также зубчатых и червячных колес, втулок, болтов, гаек и других деталей машин, пленок, изоляционных материалов в электро- и радиотехнике. Поли-е-капроамид перерабатывают прессованием, экструзией, литьем под давлением. Формование волокна осуществляется из расплава капрона. Полимер в виде гранул или крошки подают в камеру, где происходит его плавление. Затем расплавленный полимер продавливают через фильеру, при этом происходит ориентация макромолекул вдоль оси волокна. Выходя из фильеры, нити полимера, омываемые потоком воздуха, становятся твердыми. Последующая вытяжка волокна приводит к дополнительной ориентации макромолекул, что придает волокну повышенную прочность. Из капрона можно получить тончайшую нить: ее длина в 9км будет весить всего 1г. [5]
Применяется также, например, в экспериментальной науке и создании новых технологий, из-за особенностей свойств.
КОМПЕНСАЦИОННЫЙ ДАТЧИК ВЛАЖНОСТИ НА КВАРЦЕВОМ РЕЗОНАТОРЕ:
Экспериментальные данные. Для датчика влажности были выбраны кварцевые резонаторы AT-среза с резонансной частотой 6,67 МГц, которые предварительно были подвержены химической очистке. В качестве чувствительного элемента был выбран поли--капроамид, поскольку этот полимер сохраняет свою чувствительность к влаге в широком диапазоне температур. Отметим, что он практически нечувствителен к водороду и кислороду. С целью нанесения полимера на кристалл был приготовлен 2,5-процентный раствор поли--капроамида в муравьиной кислоте. Тонкие полимерные слои наносились на обе поверхности кристалла с помощью центрифугирования со скоростью 3000 об/мин в течение 30 мин. Затем проводилась операция полимеризации пленок при 250 0С и последующей полимеризации. Сдвиг резонансной частоты после нанесения пленок составил 1900 Гц.[8]
Рис. 5. Электрическая схема кварцевого датчика влажности[8]
Qz1; Qz2 – чувствительный элемент(Поли-е-капроамид).
Но наиболее популярным, в обыденной жизни, остается использование волокон, известного всем капрона. Капроновое волокно является ценным материалом для производства многих особо прочных изделий – автомобильного корда, парашютных тканей, канатов, веревок, конвейерных лент и т. д. Это волокно используют для изготовления тканей, ковров, искусственного меха, одежды.
Заключение
Изучение полимеров, их физических, химических свойств, а так же взаимодействие различных полимеров друг с другом, приводит к появлению новых соединений, которые соответствовали бы нужным свойствам. Например, можно создавать ударопрочные соединения, или соединения сочетающие несколько нужных свойств, например ударопрочность, морозостойкость, стойкость к воздействию солнечных лучей. Хотя изучение капроновых волокон уже давно практически не ведется, но в некоторых областях им находиться более достойная замена, пусть и более дорогая, но оправданная во многих ситуациях, как например кевларовые волокна, обладаюшие на порядки более высокими прочностными характеристиками. Хотя, с течением времени, и сам Поли-е-екапроамид находит более широкое применение в промышленности и в жизни, заменяя собой, во многих случаях, природные волокна.