Зависимость KKM смеси додецилсульфата натрия с CsE4 от состава раствора. Пунктирная линия соответствует расчету KKM смеси при в = 0, сплошная линия – расчет KKM смеси по уравнению при в = -3.1. Результаты показывают, что при близких значениях KKM индивидуальных ПАВ предсказываемые значения KKM смеси сильно зависят от величины параметра взаимодействия
Система с сильным притяжением между молекулами ПАВ показана на рис. а, б; это смесь децилсульфата натрия и бромида децилтри-метиламмония. Штриховая линия на рис. а рассчитана при в = 0, а сплошная соответствует в = -13.2. Обращает внимание тот факт, что при сильном притяжении между молекулами разных ПАВ в смеси наблюдается ярко выраженный синергетический эффект. Кроме того, оказывается, что можно снизить KKM анионного ПАВ добавлением катионного ПАВ, не вызывая осаждения. Для этого нужно выполнить лишь одно требование: углеводородные цепи ПАВ должны быть короткими. Состав смешанных мицелл остается постоянным в широком интервале составов, поскольку силой, определяющей мицеллообразование, является электростатическое притяжение между молекулами ПАВ двух типов.
Зависимости KKMи состава мицелл смесей децилсульфата натрия и бромида децил-триметиламмония от состава раствора. Видно, что можно использовать комбинации анионного и катионного ПАВ для достижения очень высокой поверхностной активности
В таблице приведены значения параметра взаимодействия в для типичных смесей ПАВ. Можно отметить некоторые закономерности; например, для смесей неионных и ионных ПАВ значение в уменьшается с увеличением концентрации соли вследствие экранирования и уменьшения электростатического отталкивания. Кроме того, для смесей параметр в уменьшается по модулю с увеличением температуры, т.е. уменьшается притяжение между молекулами ПАВ разных типов.
Можно рассчитать оптимальный состав смеси ПАВ. Для этого необходимо выполнение двух условий: а) в должен быть отрицательным, б) |ln| < |в|. Оптимальная композиция ПАВ, выраженная какX2, определяется уравнением
На рисунке представлена зависимость оптимальной композиции ПАВ от параметра в для трех различных значений соотношения. Оптимальный состав -50% при близких значениях KKM поверхностно-активных веществ. В остальных случаях оптимальный состав сдвигается в сторону увеличения содержания более гидрофобного ПАВ.
Зависимости оптимальных составов смесей ПАВ от параметра в для смесей ПАВ с разными соотношениями KKM индивидуальных ПАВ: ККМ2/ККМ1 = 1,0.1 и 0.01. Видно, что оптимальные композиции ПАВ сильно зависят от параметра
Типичные значения параметра в для смесей различных ПАВ
Концепция смешанных мицелл применима к смесям ПАВ с немицеллообразующими спиртами, содержащими углеводородные остатки средней длины. Зависимости KKM смесей от концентрации спирта в системе. Сплошные линии – расчет по уравнению. Предельная растворимость спирта использована как значение его ККМ. ПАВ – додеканоат калия.
Применение концепции смешанных мицелл к дифильным веществам, не образующим мицеллы
Существуют дифильные вещества, не способные к мицеллообразованию. Вместо этого при повышении концентрации происходит разделение систем на фазы. Хорошо известным примером таких веществ являются спирты с углеводородными радикалами средней длины. Концентрация, при которой происходит разделение на фазы, аналогична критической концентрации мицеллообразующих ПАВ. Следовательно, предельная растворимость таких спиртов может быть использована как «ККМ» спирта в воде для расчета KKM смесей спиртов с обычными ПАВ. На рис. представлены подобные результаты. Для смесей анионного ПАВ со спиртами приведены зависимости KKM ПАВ от концентрации спирта. Сплошные линии – расчет по уравнению с использованием значений растворимости спирта в качестве его «ККМ».
Особенности поведения смесей ПАВ при высоких концентрациях
Фазовое поведение смесей ПАВ может резко изменяться в зависимости от состава смеси ПАВ при высоких общих концентрациях ПАВ. В разных условиях композиции ПАВ демонстрируют либо синергетические, либо антагонистические эффекты. Чтобы понять происходящие явления, необходимо исследовать поведение смешанных мицелл и фазовые диаграммы смесей ПАВ. Исследование фазовых диаграмм позволяет получать детальную информацию о поведении смесей ПАВ.
Фазовая диаграмма смеси двух одинаково заряженных поверхностно-активных веществ
Для смесей двух одноименно заряженных ПАВ характерны гомогенные фазы, образование которых целиком определяется соотношением концентраций компонентов и фазовым поведением индивидуальных ПАВ. На рисунке 5.10 представлена фазовая диаграмма двух катионных ПАВ в воде: одно из них мицеллообразующее ПАВ с одной гидрофобной цепью, а второе – ПАВ с двумя гидрофобными цепями, склонное к формированию бислойных структур. В таком случае разобраться в фазовом поведении смеси можно на основе представлений о средних значениях критическою параметра упаковки ПАВ или спонтанной кривизны. Предположим, что общая концентрация ПАВ сохраняется постоянной и равной 50%. Будем двигаться от ПАВ с двумя углеводородными цепями в сторону одноцепочечного ПАВ, при этом обнаружим образование гексагональной жидкокристаллической фазы за счет сокращения области существования ламелярной жидкокристаллической фазы.
Для смесей двух противоположно заряженных ПАВ характерно более сложное фазовое поведение. Обычно наблюдается осаждение кристаллической соли двух дифильных ионов. При понижении устойчивости кристаллического состояния, например при использовании ПАВ с более короткими алкильными цепями, область осаждения сокращается или оно не происходит вовсе. В таких случаях обнаруживается множество фазовых переходов с образованием большого числа жидкокристаллических фаз. Одна из примечательных особенностей таких систем существование области термодинамически устойчивых дисперсий везикул.
Фазовая диаграмма смеси катионного и анионного ПАВ в воде. На диаграмме видны две области термодинамически устойчивых везикул
Нормальной самоорганизации индивидуального ионного ПАВ препятствует понижение энтропии вследствие конденсации противоионов. При образовании смешанных агрегатов в смесях катионного и анионного ПАВ происходит значительное увеличение энтропии. Противоионы от обоих ПАВ уходят с поверхности агрегатов. Таким образом, в противоположность ассоциации индивидуального ПАВ энтропия системы не уменьшается, что является движущей силой ассоциации катионных и анионных ПАВ в смесях. Для таких систем среднее значение числа ПАВ полностью теряет смысл. Напротив, можно говорить о немонотонном изменении КПУ с отчетливым максимумом при некотором составе композиции.
При удалении противоионов из стехиометрической смеси противоположно заряженных молекул ПАВ получается так называемое «кат-ан-ионное» ПАВ, состоящее из двух противоположно заряженных дифильных ионов. Катанион-ное дифильное вещество по свойствам скорее похоже на неионное ПАВ с двумя гидрофобными цепями. Во всяком случае его можно сравнить с цвиттерионным ПАВ с двумя гидрофобными цепями. Электростатические взаимодействия, проявляющиеся в распределении противоионов, определяют основные различия в свойствах заряженных и незаряженных ПАВ. В качестве примера можно указать на существенное различие в набухании ламелярной фазы ионных и неионных ПАВ. Оно обычно чрезвычайно сильное в случае ионного ПАВ и весьма слабое в случае НПАВ. В то же время даже небольшие добавки ионных ПАВ к неионным, цвиттерионным или катанионным ПАВ могут индуцировать интенсивное набухание ламелярной фазы. Подобные явления для ламелярной фазы лецитина иллюстрирует рис. Устойчивость и интенсивное набухание ламелярной фазы в смеси противоположно заряженных ПАВ при незначительном отклонении от стехиометоии.
Фазовая диаграмма смесей лецитина и СТАВ. Ламеляр-ные фазы лецитина легко набухают при введении в бислои заряженного ПАВ
Технологическое использование смесей ПАВ
Рисунок иллюстрирует очистку загрязненной шерсти смесью эфира алкилсульфата и линейного алкилсульфата. Если в композиции ПАВ содержание эфира алкилсульфата составляет 10–20%, очистка заметно улучшается. В этом случае композиция обладает более высокой солюбилизирующей способностью, что в свою очередь обусловлено более низким значением KKM смеси. В данном случае результаты получены при постоянной общей концентрации ПАВ. Таким образом, максимальное число мицелл образовывалось при концентрациях, близких к минимальному значению KKM смеси.