Смекни!
smekni.com

Основные понятия и образы квантовой механики (стр. 1 из 3)

Введение

Всякая наука, изучающая природные явления, использует некоторую систему образов, моделирующих реальные предметы, их качества и связи, существующие между ними. Модель и ее образы всегда выделяют лишь наиболее существенные черты явления. Чем удачнее образы, чем точнее и глубже подмечены связи между ними, тем, как правило, более экономны и даже скупы средства математического описания явлений и тем обширнее область, на которую могут распространяться методы теории. Одним из важнейших принципов естественнонаучной теории принято считать, так называемую "бритву Оккама", а именно: "не умножай число сущностей без надобности". Критерий истины в любой научной теории один – опыт, т.е. согласие теоретических прогнозов с результатами эксперимента.

Одна из наиболее глубоких областей науки, очень несложная по применяемым математическим средствам, строгая и всеобъемлющая по своим выводам, – безусловно, термодинамика. Ее называют "королевой физики". Понятия термодинамики исторически оказали сильнейшее влияние на систему взглядов и образов квантовой механики. Не случайно великие умы ХХ-го века – Планк, Эйнштейн, Бор и многие другие – оставили неизгладимый след именно в этих разделах естествознания.

Химическая наука неотделима от этих двух фундаментальных разделов физики. Квантовая механика изучает свойства отдельных частиц, и том числе атомов, молекул и кристаллов, рассматривая их как физические системы, образованные из ядер и электронов. Термодинамика делает следующий шаг, переходя от отдельных частиц к их коллективам. Эти физические системы, коллективы, принято называть термодинамическими системами. Разумеется, многие понятия и образы обеих дисциплин перекрываются. Пока частиц в системе относительно немного и есть возможность проследить за поведением каждой из них, используется аппарат квантовой механики. Но, если число частиц увеличивается настолько, что проследить за ними по отдельности становится невозможным, мы переходим к термодинамическому методу.

Как правило, строгость теории связывают с возможностью ее математической формулировки и построением количественных критериев, которые можно было бы сопоставить с результатами экспериментальных измерений. На этой ступени развития и обобщения естественнонаучного знания ситуация наиболее точно передается словами переписки двух знаменитых ученых России – В.И. Вернадского и П.А. Флоренского: "Язык образов заменяется языком символов".

Символы и их математическая связь являются эквивалентами физических образов, моделирующих явления природы на уровне элементарных частиц и их образований, таких как атомы, молекулы и кристаллы. Квантовая механика использует мощный математический аппарат, в основе которого лежит теория операторов; предметом анализа последней являются математические действия над функциями – операторы. Причины этого станут ясными по мере обсуждения теории.

В каждой конкретной области естествознания используется свойственный ей минимальный набор образов, моделей и понятий, которые следует принять в качестве простейших, а прочие категории данной области науки будут конструироваться на их основе. В качестве исходных могут быть использованы разные системы образов, но они, всегда оказываются связанными между собой. Выбор исходных образов диктуется соображениями удобства, а подчас и просто вкусом исследователя. Эта ситуация прослеживается в классической механике. Так, системы уравнений Ньютона, Лагранжа, Гамильтона выводимы, и взаимозаменяемы. Так же обстоит дело и в термодинамике; например, существуют различные равносильные и взаимозаменяемые формулировки 2-го начала термодинамики. Такое же положение имеет место и в квантовой механике. Наша задача – выделить простейшие из ее категорий, которые достаточно рациональным способом позволяют рассматривать проблемы химии.


1.1. Состояния и уровни системы. Волновые функции

1.1.1. Квантово-механическая система – это одна частица или несколько частиц, взаимодействующих друг с другом и совершающих совместные движения, В классической механике одним из разделов является статика, которая рассматривает покоящиеся системы с взаимно неподвижными частями. В микромире, изучаемом методами квантовой механики, статические, покоящиеся системы немыслимы. Все частицы, образующие систему, – всегда в движении. Обсудим характер такого движения.

1.1.2. Проще всего это сделать для замкнутой устойчивой системы, не подверженной внешним воздействиям. Энергия такой системы постоянна, а частицы находятся в строгом периодическом движении. В атоме, например, электроны обращаются вокруг ядра; в молекуле ядерный остов совершает периодические движения – колебания и вращения, а электроны периодически движутся в поле ядер и т.д. При этом некоторая совокупность координатных характеристик периодически изменяется, но измерить мгновенные положения отдельных частиц в принципе невозможно, да в этом нет и необходимости. В то же время такие характеристики, как энергия, момент количества движения, частоты колебаний доступны для экспериментального определения с той или иной точностью.

1.1.3. Эта ситуация принципиально нова в сравнении с движением классических систем. В квантовом мире мгновенные координаты частиц и закон движения, как изменение этих координат во времени лишены смысла и их следует заменить иными понятиями. Важнейшее из таких понятий – понятие состояния. Под этим непростым, но и не подлежащим упрощению, понятием подразумевается вся совокупность измеримых характеристик системы.

1.1.4. Неизменные во времени состояния замкнутых систем называются стационарными, а неизменные параметры таких состояний – динамическими характеристиками. Движения в стационарных состояниях замкнутых систем строго периодичны, а частоты таких движений – их важнейшие характеристики, становятся характеристиками состояний.

1.1.5. У замкнутых систем, образованных из двух и более частиц, полная энергия отрицательна по знаку. При этом за нуль энергии принимается потенциальная энергия взаимодействия частиц, бесконечно удаленных друг от друга. В устойчивых состояниях потенциальная энергия сил сцепления считается отрицательной, и по модулю она больше суммарной кинетической. Полную энергию стационарного состояния системы называют энергетическим уровнем, или просто уровнем.

1.1.6. Экспериментально установлено, что стационарные состояния замкнутых систем образуют дискретные наборы. Дискретны и уровни таких систем. Несколько разных состояний могут иметь одинаковую энергию. В таком случае говорят, что энергетический уровень вырожден. Кратностью вырождения уровня называется число состояний с равной энергией.

1.1.7. Дискретные состояния квантово-механической системы образуют счетные множества. Элементы этих дискретных наборов можно нумеровать. В качестве множеств, пригодных для нумерации состояний и уровней, обычно используют множество натуральных чисел N {1, 2, 3…}, или Zо {0,1,2,3...}, или множество целых чисел – Z {...-2, -1, 0, +1, +2...}. Не исключены и другие дискретные множества, например {...-3/2, -1/2, +1/2, +З/2...}. Важно то, что соседние элементы таких множеств отличаются на 1.

1.1.8. Один из уровней замкнутой системы обладает минимально возможной для ее устойчивого существования энергией. Этот уровень называют основным. Обычно с него и начинают нумерацию в порядке возрастания энергии. Остальные уровни, энергия которых больше основного уровня, называют возбужденными.

1.1.9. Если для нумерации уровней пригодны множества N или Zо, то для нумерации состояний иногда их может оказаться недостаточно. У систем, имеющих вырожденные уровни, состояния внутри таких уровней нуждаются в добавочной нумерации. Здесь-то обычно и приходят на помощь фрагменты множества Z или других множеств.

1.1.10. Для каждого из состояний квантово-механической системы вводят свой математический образ и его символ. Такой образ называют волновой функцией, для нее используют символ

, либо
или какой-либо иной. Совокупность функций состояния называют спектром волновых функций системы и изображают набором – последовательностью:

1.1.11. Каждому состоянию отвечает свой энергетический уровень:

Е1, Е2, Е3,…Еk,….

Множество разрешенных значений энергии образует спектр уровней системы:

У вырожденных уровней нумерация может быть изменена и дополнена благодаря группировке состояний по уровням.

1.1.12. Введем важные понятия состояний "чистых" и состояний "смешанных". "Чистые" – это дискретные состояния, которые разрешены для частиц, находящихся в стационарных условиях, т.е. не подверженных никаким внешним воздействиям. Такая ситуация идеальна. Реально всякая частица (атом, молекула и т.п.) лишь одна из многих, входящих в термодинамическую систему образца. Последнюю обычно рассматривают в состоянии теплового равновесия, которое в простейшем случае поддерживается за счет соударений, т.е. обмена энергией и состояниями между отдельными частицами. Поэтому приходится ожидать, что всякое реальное состояние квантово-механической системы "смешанное" и включает в себя любое из возможных "чистых" состояний с вероятностью, которая определяется условиями теплового равновесия.

1.1.13. Часто волновую функцию состояния называют вектором состояний. Это связано с особенностями математического аппарата и обусловлено глубокой аналогией, существующей между векторами и волновыми функциями.

1.2. Приборы и измерения. Операторы. Операторные уравнения

1.2.1. Исходная физическая информация о природных явлениях, в том числе и такая; которая служит первоосновой для построения теории, всегда исходит лишь из результатов эксперимента. Важнейшей чертой научного опыта является количественное измерение характеристик исследуемых систем. Соответственным образом организуется последовательность действий, приводящая к численному значению измеряемой величины. Материальная система, обеспечивающая процедуру измерения, – это прибор, имеющий определенную конструкцию с необходимыми взаимосвязанными узлами. Из стандартных узлов можно составить комбинацию различной сложности и конечного назначения.