6.2. Условия равновесия и направление самопроизвольного процесса в однокомпонентной гетерогенной системе.
Пусть гетерогенная однокомпонентная система имеет две фазы (΄) и (˝), а мольные энергии Гиббса компонента в каждой из фаз G΄ и G˝ соответственно. Пусть давление и температура постоянны, а изменение чисел молей компонента в фазе (´) равно
, в фазе (´) , тогда изменение энергии Гиббса системы равно: .Если система закрытая, то
, и .При равновесии
, а это возможно, когда , т.е. при равновесии мольные энергии Гиббса компонента в фазах равны.Самопроизвольный процесс в системе может протекать только в сторону уменьшения энергии Гиббса системы, т.е.
. Положим, для определенности, что тогда , если же. Это значит, что компонент самопроизвольно переходит из той фазы, где его мольная энергия Гиббса больше, в ту фазу, где его мольная энергия Гиббса меньше.Изменим давление и температуру на бесконечно малые величины dTиdp, тогда очевидно, что если система остается равновесной и гетерогенной
следовательно, и .6.3. Уравнение Клапейрона-Клаузиуса.
Очевидно, что
, где V’,V’’,S’,S” мольные объемы и мольные энтропии компонента в фазах (‘) и (“). Из условий равновесия или - изменение энтропии и объема при переходе 1 моля компонента из фазы (‘) в фазу (“), т.е. это мольные изменения энтропии и объема фазового превращения.Учитывая, что фазовое превращение рассматривалось как равновесное и изотермическое, то
- теплота фазового превращения и окончательно: уравнение Клапейрона–Клаузиуса.Заметим, что в уравнении Клапейрона ΔH и ΔVотносятся к одноименным процессам и на одно и тоже количество вещества.
6.4. Фазовое равновесие в конденсированных системах.
Конденсированной системой называется такая, в которой не имеется в наличии газообразная фаза, а только твердые или жидкие или те и другие вместе.
Наиболее интересным является равновесие кристалл ↔ жидкость. Поскольку теплота плавления всегда положительна, знак производной
будет зависеть от знака ∆V. Для большинства веществ ∆V>0 (Vж > Vкр), и производная положительна, т.е. температура лавления будет расти с ростом давления. Однако у некоторых веществ (H2O, Ga, Bi, Sb, Ge, Siи др.) при плавлении происходит уменьшение объема, Vж < Vкр, и температура плавления понижается с повышением давления. Так для водыЕсли предположить, что для конденсированных систем ∆Hи ∆Vне зависят ни от давления, ни от температуры, то уравнение Клапейрона-Клаузиуса легко интегрируется
.Интересным является рассмотрение равновесия С (графит) →С (алмаз). Использование справочных данных для энтальпий образования и энтропий графита и алмаза дает для этого превращения
, откуда видно, что при любых температурах . Но поскольку , то с увеличением давления ∆rG должна уменьшаться и при данной температуре графит и алмаз находятся в равновесии, тогда когда ∆rG = 0. Предположив, что ∆V не зависит от давления, получим после интегрирования. откуда .Подставив численные значения ∆rG0 и ∆V получим Р (атм) = 9448 + 17,42 Т
При 300 К Р=14670 атм.
1000 К Р=26870 атм.
1500 К Р=35580 атм., т.е. равновесные давления имеют порядок десятков тысяч атм.
Далее
, и мы видим, что при высоком давлении поменялся даже знак теплового эффекта. Действительно, возьмем уравнение Гиббса-Гельмгольца: и возьмем производную по давлению: .После интегрирования и ряда упрощений имеем:
.6.5. Интегрирование уравнения Клапейрона-Клаузиуса для процесса парообразования.
Переход жидкости в пар называют испарением, обратный процесс конденсацией. Испарение твердых тел называют возгонкой или сублимацией, обратный – кристаллизацией. Пар, который находится в равновесии с конденсированной фазой, называется насыщенным паром.
Поскольку теплота парообразования положительна, а мольный объем пара больше мольного объема конденсированной фазы, это значит, что производная в уравнении Клапейрона-Клаузиуса
т.е. с ростом температуры давление насыщенного пара увеличивается.При температурах, далеких от критических, мольный объем пара много больше мольного объема конденсированной фазы, поэтому последним можно пренебречь, а если в этой области температур насыщенный пар подчиняется уравнению состояния идеального газа, то:
, и уравнение Клапейрона-Клаузиуса можно представить в виде: .В нешироком интервале температур теплоту испарения можно считать постоянной и взятие определенного интеграла дает:
.Таким образом, если известна ∆vH, то, зная давление насыщенного пара вещества при одной температуре, можно рассчитать давление насыщенного пара при другой температуре. С другой стороны, определив давление насыщенного пара при двух (по крайней мере) температурах, можно рассчитать теплоту испарения.
Взятие неопределенного интеграла дает (при ∆vH= const)
или , где А и В – константы, характерные для данного вещества. Это уравнение, линейное в координатах lnp – 1/T, дает прямую линию в значительном интервале температур. Более точным является уравнение Антуана: , где А, В, С – константы.Практически полезным может оказаться правило Трутона: энтропия испарения вещества в нормальной точке кипения (при 1 атм.) равна приблизительно 90 Дж/моль*К. Тогда в уравнение Клапейрона-Клаузиуса входит только одна константа Тнтк – температура нормальной точки кипения:
.По этому уравнению удобно рассчитывать температуру перегонки органических соединений под пониженным давлением. Однако следует отметить, что правило Трутона соблюдается только для «нормальных» жидкостей, т.е. таких молекулы которых не ассоциированы в жидкой фазе (как у воды за счет водородных связей), а также, если пары не состоят из полимерных или диссоциированных молекул.
Для уксусной кислоты прямые определения теплоты испарения в калориметре при температуре кипения СН3СООН равной 391К дает величину 406 Дж/г. С другой стороны при 363 К давление пара 293 торр, при 391К и 760 торр. Заменив производную в уравнении Клапейрона-Клаузиуса отношением конечных приращений имеем:
.Мольная масса СН3СООН равна 60, тогда из калориметрических данных:
.