Рассмотрим подробнее применение закона действия масс для реакций на поверхности. Для описания скорости элементарной стадии используют закон действия поверхностей. Если процесс определяется скоростью реакции двух поверхностных интермедиатов (Аадс + Вадс →, ZA + ZB →, 2ZA →) скорость такой стадии, например,
(27)запишем через концентрации поверхностных веществ
и (моль/м2) моль·м–2·сек–1 (28)Удельная скорость стадии (на 1 г катализатора)
моль·г–1·сек–1 (29)где S – удельная поверхность, м2/г.
Выразим величины
и через относительные концентрации, доли занятой поверхностигде
– максимальная концентрация поверхностных центров, занимаемых молекулами А, В или С. Тогда (30)Зная насыпную плотность катализатора (G, г/л), можно пересчитать скорость в молях на 1л катализатора в сек. В жидкофазных процессах с твёрдым катализатором обычно используют значения скорости на 1л раствора. Тогда G есть количество грамм тв. катализатора в 1л раствора
R = WG = kΘAΘB, моль·л–1·сек–1, (31)
где
.Для однородной поверхности скорость реакции легко записать, выразив ΘA и ΘB через концентрации или парциальные давления реагентов А и В. В случае квазиравновесного приближения
(32)(изотерма Лэнгмюра). Тогда, для стадии (27) получим
(33)Такой тип уравнений называют уравнениями (или моделью) Лэнгмюра – Хиншельвуда и часто используют для описания кинетики гетерогенного катализа при решении прикладных задач. Кинетику реакций на неоднородных поверхностях рассмотрим в следующем разделе.
Методы вывода кинетических уравнений
Для вывода кинетических уравнений для скоростей по маршрутам и скоростей по веществам можно использовать три метода для стационарных и квазистационарных процессов:
Метод Боденштейна;
Условие стационарности стадий Хориути-Темкина;
Методы теории графов (для линейных механизмов).
Метод Боденштейна
удобно использовать, когда мало интермедиатов и много маршрутов. Решив систему уравнений относительно Xi для тех интермедиатов, которые необходимы для определения RP в соответствии с уравнением (19), получим выражение для RP стационарного или квазистационарного процесса. Зная RP, найдем выражение для RN.Условие стационарности стадий (19) дает нам систему уравнений с S неизвестными (P + NI). Метод удобно использовать, когда много интермедиатов и мало маршрутов (например, P = 1).
Пример 5. Запишем систему
для примера 3 и NI = 2:Используем веса стадий для значений Wj и доли поверхности для поверхностных концентраций, обозначив
и .Заменим
и сгруппируем неизвестные:Используя метод определителей Крамера, получим
и . (34)Уравнение (34) является искомым уравнением скорости реакции по первому маршруту для стехиометрического базиса маршрутов (
, ) с учетом материального баланса по катализатору.Пример 6.
Для примера 4 запишем систему
:При сложении трех уравнений получим:
W1 = W5 W1 = k5[H·][C2H5·] (35)
Поскольку W3 и W4 >> W5 (условие длинных цепей)
W3 = W4+
(36)Решая систему (25) и (26) относительно [Н·] и [С2Н5·], получим
(37)Применение условия стационарности стадий (уравнение 19) для вывода кинетических уравнений рассмотрим на примере одномаршрутного механизма гетерогенной каталитической реакции.
Пример 7.
(1)
(2)
(3)
Согласно (19):
Имеем три уравнения и уравнение материального баланса
, т.е. три уравнения с тремя неизвестными QA, QB и R. Заменив Q0 через 1, QA, QB, можно методом Крамера найти R. (38)Преобразуем уравнение (38):
(39)Первый сомножитель в знаменателе – следствие квазистационарности процесса, второй сомножитель есть закомплексованность катализатора (следствие учета материального баланса по катализатору). Если стадия (2) является лимитирующей стадией, то
и . Тогда, (40) (41)В условиях квазиравновесия стадий (1) и (3) уравнение (41) можно получить, используя уравнение изотермы Ленгмюра:
и уравнение для скорости лимитирующей стадии
.Для одномаршрутных линейных механизмов удобно использовать уравнение Темкина, если скорость реакции записывать через свободную концентрацию активного центра ([М] или Q0):
(42)Для рассмотренного выше примера 7:
(43)Найдя из уравнения (43) Q0, из скоростей второй стадии QА и QВ из скорости стадии (3), можно также получить уравнение (38):
, иСложив Qi, получим
, найдем R.Применение теории графов в химической кинетике
А.А. Баландин, по-видимому, впервые указал на возможность использования графов при изучении механизмов сложных реакций. Он же впервые применил к механизмам реакции элементы топологии и предложил первую классификацию механизмов на топологической основе. Затем Христиансен применил графы для классификации механизмов, а Кинг и Альтман дали графическую интерпретацию метода Крамера решения систем линейных алгебраических уравнений и использовали ее для вывода кинетических уравнений ферментативных процессов.