Отбор химических элементов – этого подвижного строительного материала эволюционирующих систем – выступает как красноречивый факт. Ныне известны более ста химических элементов. Однако основу живых систем составляют только 6 элементов, получивших наименование органогенов; это – углерод, водород, кислород, азот, фосфор и сера, общая весовая доля которых в организмах составляет 97,4%.
За ними следуют 12 элементов, которые принимают участие в построении многих физиологически важных компонентов биосистем: – натрий, калий, кальций, магний, железо, кремний, алюминий, хлор, медь, цинк, кобальт, марганец. Их весовая доля в организмах примерно 1,6%.
Картина химического мира отчетливо свидетельствует об отборе элементов. Теперь известно около десяти миллионов химических соединений.
Из них подавляющее большинство (около 96%) – это органические соединения, основной строительный материал которых – все те же 6-18 элементов. И как это ни парадоксально, из всех остальных 95-99 химических элементов природа (по крайней мере, на Земле) создала лишь около 300 тыс. неорганических соединений.
По распространенности на Земле углерод занимает 16 место. Углерод в литосфере земли распространен в 276 раз меньше, чем кремний и в 88 раз меньше, чем алюминий. Из органогенов наиболее распространены лишь кислород и водород. Распространенность же углерода, азота, фосфора и серы в поверхностных слоях Земли примерно одинакова и невелика – около 0,24%. Следовательно, геохимические условия не играют сколько-нибудь существенной роли в отборе химических элементов при формировании органических систем, а тем более биосистем. Определяющими факторами здесь выступают и требования соответствия между строительным материалом и теми сооружениями, о которых говорилось как о структурах высокоорганизованных.
С химической точки зрения эти требования сводятся к отбору элементов, способных к образованию:
достаточно прочных и, следовательно, энергоемких химических связей;
связей лабильных, т.е. легко подвергающихся гомолизу, гетеролизу или циклическому перераспределению.
Вот почему углерод выбран элементом номер один. Он, как никакой другой элемент, способен вмещать и удерживать внутри себя самые редкие химические противоположности, реализовывать их единство, выступать в качестве носителя внутреннего противоречия. Атомы углерода в одном и том же соединении способны выполнять роль и акцептора, и донора электронов. Они образуют почти все типы связей, какие знает химия: менее чем одноэлектронные и одноэлектронные (при хемосорбции углеводородов на графите); двухэлектронные (в этане); трехэлектронные (в бензоле); четырехэлектронные (в этилене); шестиэлектронные (в ацетилене).
Кислород и водород следует рассматривать в качестве носителей крайних и односторонних свойств – окислительных и восстановительных. Дж. Бернал рассматривал вопрос об отборе элементов и отметил, что лабильные атомы серы, фосфора и железа, имеют основное значение в биохимии, в то время как стабильные атомы, такие как кремний, алюминий или натрий, составляющие большую часть земной коры, играют второстепенную роль или отсутствуют вовсе.
О том, как происходил отбор структур, каков его механизм, сказать довольно трудно. Но этот процесс оставил нам своего рода музей. Подобно тому, как из всех химических элементов только 6 органогенов да 10-15 других элементов отобраны природой, чтобы составить основу биосистем, так же в результате эволюции шел тщательный отбор химических соединений. Из миллионов органических соединений в построении живого участвует лишь несколько сотен; из 100 известных аминокислот в состав белков входит только 20; лишь по четыре нуклеотида ДНК и РНК лежат в основе всех сложных полимерных нуклеиновых кислот, ответственных за наследственность и регуляцию белкового синтеза в любых живых организмах.
Как химики, так и биологи называют поразительным тот факт, что из такого узкого круга отобранных природой органических веществ составлен трудно обозримый мир животных и растений. Каким образом проводилась та «химическая подготовка», в результате которой из минимума химических элементов и минимума химических соединений образовался сложнейший высокоорганизованный комплекс – биосистема?
Занавес, отделявший нас от этих тайн, стал понемногу подниматься. В ходе эволюции отбирались те структуры, которые способствовали резкому повышению активности и селективности действия каталитических групп. Примером чего может служить система пиррольных циклов в гемине, обеспечивающая повышение активности атома железа в окислительно-восстановительных реакциях в миллиарды раз.
Первой и наиболее простой из этих структур можно назвать различные фазовые границы. Они служили основой физической и химической адсорбции, которая служила фактором появления каталитического эффекта. Вторым структурным фрагментом называют группировки, обеспечивающие процессы переноса электронов и протонов. Третий структурный фрагмент, необходимый для эволюционных систем – это группировки, ответственные за энергетическое обеспечение. Сюда входят окси- (ОН) и оксогруппы (-С=О), фосфорсодержащие и другие фрагменты с макроэргическими связями. Следующим фрагментом эволюционирующих систем является уже развитая полимерная структура типа РНК и ДНК, выполняющая ряд функций, свойственных перечисленным выше структурам, и главное – роль каталитической матрицы, на которой осуществляется воспроизведение себе подобных структур.
Обращает на себя внимание ряд выводов, полученных самыми разными путями и в самых разных областях науки (геологии, геохимии, космохимии, биохимии, термодинамике, химической кинетике):
на ранних стадиях химической эволюции мира катализ вовсе отсутствует. Роль катализа возрастала по мере того, как физические условия (главным образом, температура) приближались к земным условиям;
роль катализа в развитии химических систем после достижения стартового состояния, т.е. известного количественного минимума органических и неорганических соединений, начала возрастать с фантастической быстротой;
отбор активных соединений происходил в природе из тех продуктов, которые получались относительно большим числом химических путей и обладали широким каталитическим спектром.
Отличительной чертой второго – функционального – подхода к проблеме предбиологической эволюции является сосредоточение внимания на исследовании процессов самоорганизации материальных систем, на выявлении законов, которым подчиняются такие процессы.
5.6 Общая теория химической эволюции и биогенеза А.П. Руденко
Теория саморазвития каталитических систем, выдвинутая А.П. Руденко в 1964 году, решает в комплексе вопросы о законах химической эволюции, об отборе элементов и структур и их причинной обусловленности, о высоте химической организации и иерархии химических систем.
Сущность этой теории состоит в том, что химическая эволюция представляет собой саморазвитие каталитических систем и, следовательно, эволюционирующим веществом являются катализаторы.
В ходе реакции происходит естественный отбор тех каталитических центров, которые обладают наибольшей активностью. Те же центры, изменение которых связано с уменьшением активности, постоянно выключаются из кинетического процесса, «не выживают». При многократных последовательных необратимых изменениях катализатора переход его на все более высокие уровни сопровождается эволюцией механизма базисной реакции как за счет изменений состава и структуры катализаторов, функционировавших в начале реакции, так и за счет дробления химического процесса на элементарные стадии и появление новых катализаторов этих стадий. Эти новые катализаторы появляются за счет их саморазвития.
А.П. Руденко сформулировал основной закон химической эволюции, согласно которому с наибольшей скоростью и вероятностью реализуются те пути эволюционных изменений катализатора, на которых происходит максимальное увеличение его абсолютной активности.
Саморазвитие, самоорганизация и самоусложнение каталитических систем происходит за счет постоянного потока трансформируемой энергии. А так как основным источником энергии является базисная реакция, то максимальные эволюционные преимущества получают каталитические системы, развивающиеся на базе реакций с самым большим сродством (экзотермические реакции).
Базисная реакция является, таким образом, не только источником энергии, необходимой для полезной работы в системе, которая направлена против равновесия, но и орудием отбора наиболее прогрессивных эволюционных изменений катализаторов.
Теория саморазвития открытых каталитических систем имеет ряд важных следствий:
общая классификация этапов химической эволюции, а на ее основе - классификация катализаторов по уровню их организации;
принципиально новый метод изучения катализа как динамического явления, связанного с изменением катализаторов в ходе реакции;
конкретная характеристика пределов химической эволюции и перехода от хемогенеза к биогенезу в результате преодоления так называемого кинетического предела саморазвития каталитических систем.
5.7 Нестационарная кинетика и развитие представлений об эволюции химических систем
Г.К. Боресков убедительно доказал, что под влиянием реакционной среды свежие катализаторы изменяют свой состав и структуру, достигая стационарного состава и соответствующей ему удельной каталитической активности. Считается и ныне, что подавляющее большинство промышленных каталитических процессов осуществляется в стационарных условиях.