Из-за высокой стоимости олова чаще используют бронзы, в которых часть олова заменена цинком (или свинцом).
Алюминиевые бронзы
Эти бронзы (однофазные и двухфазные) все более широко заменяют латуни и оловянные бронзы.
Однофазные бронзы в группе медных сплавов имеют наибольшую пластичность. Их используют для листов (в том числе небольшой толщины) и штамповки со значительной деформацией. После сильной холодной пластической деформации достигаются повышенные прочность и упругость. Двухфазные бронзы подвергают горячей деформации или применяют в виде отливок. У алюминиевых бронз литейные свойства (жидкотекучесть) ниже, чем у оловянных; коэффициент усадки больше, но они не образуют пористости, что обеспечивает получение более плотных отливок. Литейные свойства улучшаются введением в указанные бронзы небольших количеств фосфора. Бронзы в отливках используют, в частности, для котельной арматуры сравнительно простой формы, но работающей при повышенных напряжениях.
Кроме того, алюминиевые двухфазные бронзы, имеют более высокие прочностные свойства, чем латуни и оловянные бронзы. У сложных алюминиевых бронз, содержащих никель и железо, прочность составляет 55-60 кгс/мм2 .
Все алюминиевые бронзы, как и оловянные, хорошо устойчивы против коррозии в морской воде и во влажной тропической атмосфере.
Алюминиевые бронзы используют в судостроении, авиации, и т.д. В виде лент, листов, проволоки их применяют для упругих элементов, в частности для токоведущих пружин.
Кремнистые бронзы
Применение кремнистых бронз ограниченно. Используются однофазные бронзы как более пластичные. Они превосходят алюминиевые бронзы и латуни в прочности и стойкости в щелочных (в том числе сточных) средах.
Эти бронзы применяют для арматуры и труб, работающих в указанных средах.
Кремнистые бронзы, дополнительно легированные марганцем, в результате сильной холодной деформации приобретают повышенные прочность и упругость и в виде ленты или проволоки используются для различных упругих элементов.
Бериллиевые бронзы сочетают очень высокую прочность ( до 120 кгс/мм2 ) и коррозионную стойкость с повышенной электропроводностью.
Однако эти бронзы из-за высокой стоимости бериллия используют лишь для особо ответственных случаях в изделиях небольшого сечения в виде лент, проволоки для пружин, мембран, сильфонов и контактах в электрических машинах, аппаратах и приборах.
Указанные свойства бериллиевые бронзы получаются после закалки и старения, т.к. растворимость бериллия в меди уменьшается с понижением температуры.
Выделение при старении частиц химического соединения CuBe повышает прочность и уменьшает концентрацию бериллия в растворе меди.
Медь в промышленности
В настоящее время медь добывают из руд. Последние, в зависимости от характера входящих в их состав соединений, подразделяют на оксидные и сульфидные. Сульфидные руды имеют наибольшее значение, поскольку из них выплавляется 80% всей добываемой меди.
Важнейшими минералами, входящими в состав медных руд, являются: халькозин или медный блеск - Cu2S; халькопирит или медный колчедан - CuFeS2; малахит - (CuOH)2CO3.Медные руды, как правило, содержат большое количество пустой породы, так что непосредственное получение из них меди экономически невыгодно. Поэтому в металлургии меди особенно важную роль играет обогащение (обычно флотационный метод), позволяющее использовать руды с небольшим содержанием меди.
Выплавка меди их её сульфидных руд или концентратов представляет собою сложный пpо-цесс. Обычно он слагается из следующих операций:
· обжиг
· плавка
· конвертирование
· огневое рафинирование
· электролитическое рафинирование
В ходе обжига большая часть сульфидов пpимесных элементов превращается в оксиды. Так, главная примесь большинства медных руд, пирит - FeS2 - превращается в Fe2O3. Газы, отходящие при обжиге, содержат SO2 и используются для получения серной кислоты.
Получающиеся в ходе обжига оксиды железа, цинка и других примесей отделяются в виде шлака при плавке. Основной же продукт плавки - жидкий штейн (Cu2S с примесью FeS) поступает в конвертор, где через него продувают воздух. В ходе конвертирования выделяется диоксид серы и получается черновая или сырая медь.
Для извлечения ценных спутников (Au, Ag, Te и др.) и для удаления вредных примесей черновая медь подвергается огневому, а затем электролитическому рафинированию. В ходе огневого рафинирования жидкая медь насыщается кислородом. При этом пpимеси железа, цинка, кобальта окисляются, переходят в шлак и удаляются. Медь же разливают в формы. Получающиеся отливки служат анодами при электролитическом рафинировании.
Чистая медь — тягучий вязкий металл светло-розового цвета, легко пpокатываемый в тонкие листы. Она очень хорошо проводит тепло и электрический ток, уступая в этом отношении только серебру. В сухом воздухе медь почти не изменяется, так как образующаяся на её поверхности тончайшая плёнка оксидов придает меди более тёмный цвет и также служит хорошей защитой от дальнейшего окисления. Но в присутствии влаги и диоксида углерода поверхность меди покрывается зеленоватым налётом гидpоксокаpбоната меди - (CuOH)2CO3. При нагревании на воздухе в интервале температур 200-375oC медь окисляется до черного оксида меди(II) CuO. При более высоких температурах на её поверхности образуется двухслойная окалина: поверхностный слой представляет собой оксид меди(II), а внутренний - красный оксид меди(I) - Cu2O.
Медь широко используется в промышленности из-за :
· высокой теплопроводимости
· высокой электропроводимости
· ковкости
· хороших литейных качеств
· большого сопротивления на разрыв
· химической стойкости
Около 40% меди идёт на изготовление различных электрических проводов и кабелей. Широкое применение в машиностроительной промышленности и электротехнике нашли различные сплавы меди с другими веществами. Наиболее важные из них являются латуни (сплав меди с цинком), медноникеливые сплавы и бронзы.
Все медные сплавы обладают высокой стойкостью против атмосферной коррозии.
В химическом отношении медь — малоактивный металл. Однако с галогенами она реагирует уже при комнатной температуре. Например, с влажным хлором она образует хлорид - CuCl2. При нагревании медь взаимодействует и с серой, образуя сульфид - Cu2S.
Находясь в ряду напряжения после водорода, медь не вытесняет его из кислот. Поэтому соляная и разбавленная серная кислоты на медь не действуют. Однако в присутствии кислорода медь растворяется в этих кислотах с образованием соответствующих солей:
2Cu + 4HCl + O2 —> 2CuCl2 + 2H2O
Летучие соединения меди окрашивают несветящееся пламя газовой горелки в сине-зелёный цвет.
Соединения меди(I) в общем менее устойчивы, чем соединения меди(II), оксид Cu2O3 и его производные весьма нестойки. В паре с металлической медью Cu2O применяется в купоросных выпрямителях переменного тока.
Оксид меди(II) (окись меди) - CuO - черное вещество, встречающееся в природе (например в виде минерала тенеpита). Его легко можно получит прокаливанием гидpоксокаpбоната меди(II) (CuOH)2CO3 или нитрата меди(II) - Cu(NO3)2. При нагревании с различными органическими веществами CuO окисляет их, превращая углерод в диоксид углерода, а водород – в воду и восстанавливаясь при этом в металлическую медь. Этой реакцией пользуются при элементарном анализе органических веществ для определения содержания в них углерода и водорода.
Гидроксокарбонат меди(II) - (CuOH)2CO3 - встречается в природе в виде минерала малахита, имеющего красивый изумрудно-зелёный цвет, применяется для получения хлорида меди(II), для приготовления синих и зелёных минеральных красок, а также в пиротехнике.
Сульфат меди(II) - CuSO4 - в безводном состоянии представляет собой белый порошок, который при поглощении воды синеет. Поэтому он применяется для обнаружения следов влаги в органических жидкостях.
Смешанный ацетат-арсенит меди(II) - Cu(CH3COO)2•Cu3(AsO3)2 - применяется под названием "парижская зелень" для уничтожения вредителей растений.
Из солей меди вырабатывают большое количество минеральных красок, разнообразных по цвету: зелёных, синих, коричневых, фиолетовых и черных. Все соли меди ядовиты, поэтому медную посуду лудят – покрывают внутри слоем олова, чтобы предотвратить возможность образования медных солей.
Хаpактеpное свойство двухзарядных ионов меди – их способность соединяться с молекулами аммиака с образованием комплексных ионов.
Медь принадлежит к числу микроэлементов. Такое название получили Fe, Cu, Mn, Mo, B, Zn, Co в связи с тем, что малые количества их необходимы для нормальной жизнедеятельности растений.
Медь в жизни растений и животных
Медь — необходимый для растений и животных микроэлемент. Основная биохимическая функция Меди — участие в ферментативных реакциях в качестве активатора или в составе медьсодержащих ферментов. Количество Меди в растениях колеблется от 0,0001 до 0,05 % (на сухое вещество) и зависит от вида растения и содержания Меди в почве. В растениях Медь входит в состав ферментов-оксидов и белка пластоцианина. В оптимальных концентрациях Медь повышает холодостойкость растений, способствует их росту и развитию. Среди животных наиболее богаты Медью некоторые беспозвоночные (у моллюсков и ракообразных в гемоцианине содержится 0,15 — 0,26 % Меди). Поступая с пищей, Медь всасывается в кишечнике, связывается с белком сыворотки крови — альбумином, затем поглощается печенью, откуда в составе белка церулоплазмина возвращается в кровь и доставляется к органам и тканям.